
Medical Image Analysis

Koen Van Leemput

September 16, 2024

c© This work is licensed under CC BY 4.0

Contents

1 Smoothing and Interpolation 1
1.1 Linear regression . 1

1.1.1 Regularization . 2
1.2 Smoothing and interpolation of 1D signals 3

1.2.1 Smoothing . 5
1.2.2 Interpolation . 7

1.3 Smoothing and interpolation in higher dimensions 7
1.3.1 Exploiting separability . 10
1.3.2 Smoothing in 2D . 11
1.3.3 Interpolation in 2D . 11

2 Image Registration 15
2.1 Coordinate systems . 15
2.2 Transformation models . 18

2.2.1 Linear transformations . 18
2.2.2 Nonlinear transformations 21

2.3 Landmark-based registration . 21
2.4 Intensity-based registration . 23

2.4.1 Sum of squared differences 23
2.4.2 Mutual Information . 26

3 Model-based Segmentation 31
3.1 Generative models . 31
3.2 Gaussian mixture model . 32
3.3 Markov random field priors . 36

3.3.1 Markov random field model 36
3.3.2 Inference using the mean-field approximation 38

3.4 Parameter optimization using the EM algorithm 40
3.5 Modeling MR bias fields . 45

4 Neural Networks 51
4.1 Logistic regression . 51
4.2 Training with stochastic gradient descent 53
4.3 Feed-forward network functions 55

i

ii CONTENTS

5 Atlases 61
5.1 Reference templates . 61

5.1.1 Intensity averaging . 62
5.1.2 Group-wise registration 62

5.2 Atlases for segmentation . 64
5.2.1 Probabilistic atlases . 64
5.2.2 Label propagation . 67

6 Validation 69
6.1 Validation against a known ground truth 69

6.1.1 Confusion matrix, sensitivity, and specificity 69
6.1.2 ROC curve . 71
6.1.3 Dice score . 74

6.2 Estimating the ground truth . 74

Bibliography 81

Chapter 1

Smoothing and
Interpolation

A fundamental prerequisite for solving many medical image analysis tasks is
the ability to smooth and interpolate signals in two or three dimensions. In this
chapter the basic principles of these techniques are reviewed.

1.1 Linear regression

Let x = (x1, . . . , xD)T denote the spatial position in a D-dimensional space.
In medical imaging, D is typically 2 or 3. Given N measurements {tn}Nn=1 at
locations {xn}Nn=1, a frequent task is to predict the value t at a new location x.
A simple model, known as linear regression, uses the function value

y(x,w) = w0 + w1x1 + . . .+ wDxD

as its prediction, where w0, . . . , wD are tunable weights that need to be esti-
mated from the available measurements. A more general form uses nonlinear
functions of the input locations instead:

y(x,w) = w0 +

M−1∑
m=1

wmφm(x),

which greatly increases the flexibility of the model. Here the functions φm(x)
are known as basis functions, and it is often convenient to define an additional
“dummy” basis function φ0(x) = 1, so that the model can be written as

y(x,w) =

M−1∑
m=0

wmφm(x), (1.1)

where w = (w0, . . . , wM−1)T are M tunable parameters.

1

2 CHAPTER 1. SMOOTHING AND INTERPOLATION

In order to find suitable values of the parameters of the model, the following
energy can be minimized with respect to w:

E(w) =

N∑
n=1

(
tn −

M−1∑
m=0

wmφm(xn)

)2

,

which simply sums of the squared distances between the measurements tn and
the model’s predictions y(xn,w). Taking the partial derivative with respect to
parameter wm yields

∂E(w)

∂wm
= −2

N∑
n=1

(
tn −

M−1∑
m=0

wmφm(xn)

)
φm(xn),

so that the gradient is given by

∇E(w) =


∂E(w)
∂w0

...
∂E(w)
∂wM−1

 = −2ΦT (t−Φw) ,

where t = (t1, . . . , tN)T is a vector stacking all measurements, and

Φ =


φ0(x1) φ1(x1) . . . φM−1(x1)
φ0(x2) φ1(x2) . . . φM−1(x2)

...
...

. . .
...

φ0(xN) φ1(xN) . . . φM−1(xN)

 (1.2)

is a N ×M matrix containing the value of all the basis functions in each of the
measurement locations. Settings this gradient to zero gives

ΦT (t−Φw) = 0

with solution

w =
(
ΦTΦ

)−1
ΦTt. (1.3)

With these parameters, a prediction at a new location x is obtained by evalu-
ating (1.1).

1.1.1 Regularization

In some cases prior knowledge is available about the parameters w (for instance,
that their values are typically small), or about the expected behavior of y(x,w)
(for instance that it is a smooth function). This can be taken into account by
adding a regularization term to the energy, optimizing

E(w) + λ‖Ωw‖2 (1.4)

1.2. SMOOTHING AND INTERPOLATION OF 1D SIGNALS 3

instead. Here λ is a parameter controlling the strength of the regularization,
and Ω is a matrix chosen so that it penalizes undesirable values of w. An
example of Ω could simply be the identify matrix, so that the regularization
energy becomes

‖w‖2 = w2
0 + . . .+ w2

M−1,

which penalizes large values of w. Other examples include Ω = Φ, so that large
values of the predictions t̂ = Φw at the measurement locations are penalized;
or even Ω = ΓΦ, with Γ detecting rapid spatial fluctuations in t̂ (e.g., first- or
second-order finite differences).

Optimizing (1.4) with respect to w, by setting its gradient to zero and solving
for w as before, yields

w =
(
ΦTΦ + λΩTΩ

)−1
ΦTt, (1.5)

which is a straightforward extension of (1.3)

1.2 Smoothing and interpolation of 1D signals

Before addressing applications in two- or three-dimensional imaging problems,
it is instructive to first study the one-dimensional (1D) setting. In this scenario,
we are seeking functions of the form

y(x,w) =

M−1∑
m=0

wmφm(x), (1.6)

where x is a scalar (a location in 1D space). Furthermore, the N measurement
locations lie on a regular grid with unit interval:

xn = n− 1, ∀n = 1, . . . , N,

i.e., the signals t are 1D “images”.

In signal processing applications, the basis functions associated with the
“type II” discrete cosine transform (DCT) often have useful analytical and
numerical properties. In particular, they often allow to compress signals ef-
ficiently by discarding the highest frequencies; Φw and ΦTt can be computed
very quickly using the fast Fourier transform (FTT); and ΦTΦ = N

2 I. They
are defined as follows:

φm(x) =

(
1√
2

)[m=0]

cos

(
πm(x+

1

2
)/N

)
, (1.7)

for frequencies m = 0, . . . ,M − 1, where M ≤ N . An example is shown in
Fig. 1.1a for M = 5.

4 CHAPTER 1. SMOOTHING AND INTERPOLATION

(a) DCT (b) B-spline

Figure 1.1: Two sets of often-used basis functions (M = 5).

Another set of useful basis functions are derived from B-splines, which are
symmetrical functions constructed from the repeated convolution of a rectan-
gular pulse β0:

β0(x) =

 1, − 1
2 < x < 1

2
1
2 , |x| =

1
2

0, otherwise,

βp(x) =
(
β0 ∗ β0 ∗ · · · ∗ β0

)︸ ︷︷ ︸
(p+1) times

(x).

Here p is called the order of the B-spline, and ∗ denotes a convolution:

(f ∗ g) (x) =

∫ ∞
τ=−∞

f(τ)g(x− τ)dτ.

Often-used B-spline orders (e.g, for interpolation) are p = 1:

β1(x) =

{
1− |x|, |x| < 1
0, otherwise,

and p = 3 (“cubic” B-spline):

β3(x) =


2
3 − |x|

2 + |x|3
2 , |x| < 1

(2−|x|)3
6 , 1 ≤ |x| < 2

0, otherwise.

B-splines of order zero, one and three are illustrated in Fig. 1.2.
B-splines are typically used to construct basis functions by scaling them with

some factor h, and shifting them to be h unites apart:

φm(x) = βp
(
x−mh

h

)
. (1.8)

1.2. SMOOTHING AND INTERPOLATION OF 1D SIGNALS 5

Figure 1.2: B-splines β0(x), β1(x) and β3(x).

This is illustrated in Fig. 1.1b for the case h = 25. The usefulness of these
type of basis functions stems from their limited support (they are only non-zero
within a small range), which can be used to dramatically reduce the number of
terms that need to be summed over in practical implementations (e.g., in (1.6)).
Furthermore, in interpolation applications B-splines enjoy a number of theo-
retical and numerical advantages (e.g., the curvature of y(x,w) is minimized,
and the required matrix inversions can be performed with very fast filter-based
methods) [1].

1.2.1 Smoothing

In some applications, the measurements tn, n = 1, . . . , N are only noisy ob-
servations, and the aim is to recover the “denoised” underlying signal t̂n =
y(xn,w) at the locations xn. Collecting these denoised estimates into a vector
t̂ = (t̂1, . . . , t̂N)T, we obtain (cf. (1.6)):

t̂ = Φw. (1.9)

Plugging in the solution (1.5) then yields

t̂ = St,

where

S = Φ
(
ΦTΦ + λΩTΩ

)−1
ΦT

is a N×N “smoothing” matrix that transforms a noisy signal t into a “denoised”
signal t̂ by making linear combinations of the elements in t. The n-th row of S
contains the weights assigned to the various elements of t in the computation
of t̂n, as illustrated in Fig. 1.3 (bottom row).

The amount of smoothing that is applied can be controlled by both the
number of basis functions M and the regularization parameter λ: choosing
higher M or lower λ will produce less smoothing. This effect is illustrated in
Fig. 1.3. In the limit, when M = N and λ = 0, S becomes the identify matrix1

and no smoothing is applied at all.

1Because Φ is square when M = N , so that (ΦTΦ)−1 = Φ−1(ΦT)−1.

6 CHAPTER 1. SMOOTHING AND INTERPOLATION

(a) M = 28 and γ = 0 (b) M = 7 and γ = 0 (c) M = 28 and γ = 1000

Figure 1.3: Smoothing of a 1D signal when the number of basis functions (M)
and the regularization strength (γ) is varied. The regularizer is of the form
Ω = ΓΦ, where Γ computes second-order finite differences (the n-th row has
all zeros except for columns n− 1, n and n+ 1, who have elements -1, 2 and -1,
respectively). From top to bottom: basis functions that were used; noisy signal
t and denoised signal t̂ in blue and red, respectively; smoothing matrix S; and
the middle row of S.

1.3. SMOOTHING AND INTERPOLATION IN HIGHER DIMENSIONS 7

1.2.2 Interpolation

When several medical images need to be compared, a common problem is that
the intensities of an image need to be evaluated at locations x different from the
integer locations x1 =0, x2 =1, . . . xN =N−1 where the intensities t1, t2, . . . , tN
are defined. A standard solution is to set λ = 0, and use the shifted B-spline
basis functions of (1.8) with scaling factor h = 1, i.e., a B-spline βp is centered
around each of the N integer coordinates xn. Because M = N , the solution is
given by1

w = Φ−1t,

for which fast, dedicated numerical solvers are available [1].

As already analyzed above, the resulting function y(x,w) will pass exactly
through the original intensities tn at the integer locations xn. However, the
model will also fill in “interpolating” intensity values everywhere else, with the
exact behavior depending on the order of the B-spline. For order p = 0, so-
called nearest neighbor interpolation is obtained, in which the predicted value
at location x is simply the value tn of the measurement location xn that is
nearest to x2 . For p = 1, linear interpolation is obtained, in which y(x,w) is
piece-wise linear between the integer locations {xn}Nn=1. Finally, p = 3 results
in so-called cubic interpolation, which is the method of choice in most practical
applications. The effect of the B-spline order on the interpolation behavior of
the model is illustrated in Fig. 1.4.

1.3 Smoothing and interpolation in higher di-
mensions

When going to D = 2 dimensions, the spatial locations x = (x1, x2) consist
of two coordinates x1 and x2, and the measurement signal becomes a two-
dimensional image, represented by a matrix with N1 rows and N2 columns:

T =


t1,1 t1,2 · · · t1,N2

t2,1 t2,2 · · · t2,N2

...
...

. . .
...

tN1,1 tN1,2 · · · tN1,N2

 .

It will be convenient to define a vectorization operation – denoted by vec(·) –
that re-arranges this N1×N2 image into a 1D signal t of length N = N1N2, by

2Strictly speaking an exception is made at locations x that fall exactly half-way between
two integer locations, where the average value is returned.

8 CHAPTER 1. SMOOTHING AND INTERPOLATION

Figure 1.4: Nearest-neighbor, linear and cubic interpolation.

stacking the columns of T under each other:

t = vec(T) =



t1,1
...

tN1,1

t1,2
...

tN1,2

...
tN1,N2


. (1.10)

In this re-arrangement, element tn1,n2
in T corresponds to element tn in t, where

n = n1 + (n2 − 1)N1.
In order to proceed, we also need to choose appropriate basis functions φm(x)

that work in 2D. A convenient choice is often separable basis functions, which
are simply the product of two 1D basis functions (one taking as input x1, and
the other one x2). If there are M1 basis functions in the first (row) direction,
and M2 in the second (column) direction, taking all the combinations yields a
total of M = M1M2 basis functions in 2D, given by

φm(x) = φm1
(x1)φm2

(x2) (1.11)

1.3. SMOOTHING AND INTERPOLATION IN HIGHER DIMENSIONS 9

Figure 1.5: The 36 separable 2D basis functions produced from two sets of 6 1D
basis functions.

for m = m1 +m2M1 (recall that m1 and m2 run from 0 to M1 − 1 and M2 − 1
respectively). Fig. 1.5 illustrates the 2D basis functions generated from 1D
B-spline basis functions this way.

To simplify notation, it will be convenient to use the Kronecker product of
two matrices:

A⊗B =

 a1,1B a2,1B . . .
a2,1B a2,2B . . .

...
...

. . .

 .

If Φ1 denotes theN1×M1 matrix containing the output of theM1 basis functions
evaluated at the integer locations x1 = 0, . . . , N1−1, and Φ2 is similarly defined
for the second direction, then

Φ = Φ2 ⊗Φ1 (1.12)

is a N ×M matrix that contains vectorized versions of all M basis functions in
2D, where the m-th column contains (1.11) evaluated at all the pixel locations
in T.

Equipped with (1.10), (1.11) and (1.12), any smoothing or interpolation
problem in 2D can be directly mapped into a 1D problem, so that the solutions
described in Sec. 1.2 can (in principle) be directly applied. The extension to
3D is also straightforward; for example, vectorized versions of the output of
M = M1M2M3 basis functions, evaluated at all N = N1N2N3 locations, are
given by

Φ = Φ3 ⊗Φ2 ⊗Φ1.

10 CHAPTER 1. SMOOTHING AND INTERPOLATION

1.3.1 Exploiting separability

Although the problem is in theory solved, in practice the computations involve
storing and inverting a M ×M matrix, which can be problematic when M is
very large (i.e., when the model involves many basis functions). As an example,
consider the interpolation of a 3D volume of size 256×256×256, an application
in which there are M = 2563 basis functions. At this size, naively storing
a matrix with M2 elements at 64 bits per element (double-precision floating
point) would take 2048 TB; subsequently inverting it would take O(M3) =
O(2569) operations, making it entirely infeasible. In contrast, re-arranging the
computations as outlined below only requires storing and inverting three 256×
256 matrices, taking 512 KB and O(2563) operations each. For a 2D image of
size 256 × 256, the savings are more modest but still very substantial: storing
a matrix of 32 GB vs. two matrices of 512 KB, and O(2566) operations vs. two
times O(2563) operations for matrix inversions, which is almost 10 million times
faster.

When no regularization is used (λ = 0), the separability of the basis functions
can be exploited as follows. In 2D, element m = m1 + m2M1 in the length-M
vector c = ΦTt is given by

cm =

N∑
n=1

φn,mtn

=

N1∑
n1=1

N2∑
n2=1

φ1n1,m1
φ2n2,m2

tn1,n2

=

N1∑
n1=1

φ1n1,m1

(
N2∑
n2=1

φ2n2,m2
tn1,n2

)
,

where φ1·,· and φ2·,· denote elements in Φ1 and Φ2, respectively. The key insight
is that the same summation over the second direction (in parentheses) is needed
for each new m1, and therefore needs to be computed only once. In matrix
form, this can be expressed as

C = ΦT
1 TΦ2,

where C is a M1×M2 matrix such that vec(C) = c. Similarly, it can be shown
that Φw can be more efficiently computed as Φ1WΦT

2 , with vec(W) = w.
Therefore, the solution (1.3), which can be written as

ΦT (Φw) = ΦTt,

can also be expressed as

ΦT
1

(
Φ1WΦT

2

)
Φ2 = ΦT

1 TΦ2,

so that finally

W =
(
ΦT

1 Φ1

)−1
ΦT

1 TΦ2

(
ΦT

2 Φ2

)−1
(1.13)

can be used to compute the elements of w very efficiently.

1.3. SMOOTHING AND INTERPOLATION IN HIGHER DIMENSIONS 11

1.3.2 Smoothing in 2D

Plugging the solution (1.13) in (1.9), and using the same approach as above, it
is easy to see that a smoothed image can be obtained as

T̂ = S1TST
2 ,

where

S1 = Φ1

(
ΦT

1 Φ1

)−1
ΦT

1

is a N1 ×N1 smoothing matrix that smoothes each column in T independently
in the row-direction only, and the corresponding S2 subsequently smoothes each
row in the column direction (or vice versa). This is illustrated in Fig. 1.6.

1.3.3 Interpolation in 2D

For interpolation, the parameters are simply obtained as

W = Φ−11 T
(
Φ−12

)T
.

Interpolated values at new locations x are then computed using (1.1), exploiting
the separability of the basis functions (1.11). Nearest-neighbor, linear and cubic
interpolation in 2D are illustrated in Fig. 1.7.

12 CHAPTER 1. SMOOTHING AND INTERPOLATION

(a) T (b) T̂

(c) S1T (d) TST
2

Figure 1.6: Smoothing of a 2D image T by fitting the 2D basis functions of
Fig. 1.5 to it. Computationally the smoothed result T̂ can be obtained by
smoothing across the rows and then the columns (or vice versa), using the 1D
basis functions shown in Fig. 1.5.

1.3. SMOOTHING AND INTERPOLATION IN HIGHER DIMENSIONS 13

(a) (b)

(c) (d)

Figure 1.7: 2D nearest-neighbor (b), linear (c) and cubic (d) interpolation within
the small image area indicated in (a).

14 CHAPTER 1. SMOOTHING AND INTERPOLATION

Chapter 2

Image Registration

In many situations, the information contained in two or more images needs to be
combined. Examples of such situations include interpreting images of the same
patient acquired at different time points, or with different imaging modalities,
as well as comparing the anatomy or function between various subject groups
(e.g., to study how patients differ from controls in a clinical research study).
In order for images to be used this way, they need to be spatially aligned so
that corresponding structures appear in corresponding locations. The process
of aligning images is called image registration. This chapter introduces some of
its basic concepts in a medical imaging context.

2.1 Coordinate systems

So far we have taken a rather cavalier attitude regarding the spatial locations
of voxels (pixels in 3D): for 3D images we have simply assumed that we can
index individual voxels by their location x = (x1, x2, x3)T, where x1, x2 and x3
are integers. In reality, however, scanners can generate images with almost any
voxel size (spacing between the voxels in each of the three dimensions) and in
any orientation. In magnetic resonance imaging (MRI), for instance, it is not
uncommon to acquire multiple images when a patient is inside the scanner, each
defined on its own image grid. An example is shown in Fig. 2.1.

In order to relate multiple images to each other, we’ll need to differentiate
the concept of “voxel coordinates” (which are defined in integers units, and
index individual voxels in a 3D image grid) from that of “world coordinates”
(indicating the spatial positions of voxels in the real world, and measured in
mm). Specifically, let v = (v1, v2, v3)T denote the voxel coordinate of a voxel
in an image of size N1 × N2 × N3, where vd = 0, . . . Nd − 1 for all dimensions
d = 1, . . . , 3. In addition to a N1×N2×N3 array of intensities, the scanner will
also encode a 3× 3 matrix A and a 3× 1 vector t to map voxel coordinates into
world coordinates as follows:

x = Av + t, (2.1)

15

16 CHAPTER 2. IMAGE REGISTRATION

(a) Displayed in world coordinates

(b) Displayed in voxel coordinates

Figure 2.1: Two MR images acquired within the same scan session: T1-weighted
(left) and T2-weighted (right). Although the two images show corresponding
structures in corresponding locations in world coordinates (a), the 3D array of
image intensities acquired by the scanner is actually very different between the
two scans: The T1-weighted scan is a 256 × 256 × 150 volume with voxel size
0.94 × 0.94 × 1.2 mm3 acquired in the sagittal direction, whereas T2-weighted
scan is a 256× 256× 28 volume with voxel size 0.90× 0.90× 4.98 mm3 acquired
in the axial direction. This is clearly visible when displaying the two images in
voxel coordinates instead (b).

2.1. COORDINATE SYSTEMS 17

where

A =

 a1,1 a1,2 a1,3
a2,1 a2,2 a3,3
a3,1 a3,2 a3,3

 and t =

 t1
t2
t3

 . (2.2)

For instance, the combination

A =

 0.95 0 0
0 0.95 0
0 0 4.5

 and t =

 −120.0
−120.0
−65.0


for an image of size 256 × 256 × 30 would indicate that the size of a voxel is
0.95mm × 0.95mm × 4.5 mm, and that the origin of the world coordinate system
(the location where x = 0) lies somewhere in the middle of the image array.
Very often, A will also include more general spatial transformations, such as 3D
rotations or “flipping” of axes (negative voxel spacings, so that an increase in
some voxel coordinate(s) will results in a decrease in world coordinate(s)).

Who decides what directions A should encode, or where the origin of the
world coordinate system should be located? This is a matter of convention, and
several such conventions exist. The origin is often considered to be approxi-
mately at the center of the anatomical structure being scanned; a well-known
world coordinate system is the RAS convention, where x1 increases towards
the Right of the patient, x2 towards the Anterior (front), and x3 towards the
Superior (top) of the patient. Another often-used convention is LPS (Left,
Posterior, Superior), which is similar to the RAS system but with the direction
of the first two axes swapped. When working with medical images, it is criti-
cally important to know what convention is used for each image, lest a patient
be operated on the wrong side of their body!

Consider again the situation in Fig. 2.1, where two different images of the
same patient were acquired within the same scanning session: one T1-weighted
scan with voxel-to-world mapping {AT1, tT1}, and one T2-weighted scan with
{AT2, tT2}. In order to compute the voxel coordinate vT2 in the T2-weighted
scan corresponding to a voxel coordinate vT1 in the T1-weighed one, it is often
convenient to re-write (2.1) as follows:

x1
x2
x3
1

 =


a1,1 a1,2 a1,3 t1
a2,1 a2,2 a2,3 t2
a3,1 a3,2 a3,3 t3

0 0 0 1


︸ ︷︷ ︸

M


v1
v2
v3
1

 , (2.3)

where the 4×4 matrix M is called an affine matrix. This technique, which uses
so-called homogeneous coordinates (vectors are augmented with a 1 at the end),
absorbs the addition of the vector t into a single matrix multiplication, which
makes concatenating several affine matrices very easy: the mapping of vT1 to
vT2 is given by: (

vT2

1

)
= M−1

T2 ·MT1 ·
(

vT1

1

)
.

18 CHAPTER 2. IMAGE REGISTRATION

We will soon see examples where more than two affine matrices are combined
this way.

2.2 Transformation models

In many situations, images will not be perfectly aligned as in Fig. 2.1. This could
be because the patient has moved between the two acquisitions, for instance
because the scanning was performed on a different day or on a different scanner
(e.g., MRI vs. CT scan). It could also be because of organ deformation, caused
by breathing in a dynamic MRI, for instance, or because of tumor shrinkage or
patient weight loss during the course of a radiation therapy treatment. In such
situations, an additional geometrical transformation exists that a registration
method should try to recover so that the images can still be compared to each
other.

Let x = (x1, . . . , xD)T denote a spatial location (in world coordinates) in an
image that we will call the fixed image in the remainder, where D = 2 in 2D
and D = 3 in 3D images. Similarly, we will use y = (y1, . . . , yD)T to denote
spatial locations (again in world coordinates) in another image, which we will
refer to as the moving image. Our task is to find a transformation model

y(x,w) =

 y1(x,w)
...

yD(x,w)

 (2.4)

so that points in the fixed image are mapped to the corresponding anatomical
locations in the moving image. Here yd(x,w) is a function that governs how
points in the fixed image move along the d-th direction in the moving image as
the parameter vector w is varied.

2.2.1 Linear transformations

Affine transformation: In the most general form of linear transformations,
lines that are straight in the fixed image will still be straight when mapped into
the moving image, but angles and areas/volumes are typically not preserved. An
illustration is provided in Fig. 2.2a. Such transformations are useful to roughly
align images of different individuals or time points (for instance as a first step
in a subsequent nonlinear registration algorithm), so that the major differences
in size and orientation are removed. The transformation model is governed by:

y(x,w) = Ax + t,

where A and t are given by

A =

(
a1,1 a1,2
a2,1 a2,2

)
and t =

(
t1
t2

)

2.2. TRANSFORMATION MODELS 19

in 2D, and by (2.2) in 3D. Here t implements a translation, whereas rotation,
scaling and skewing are encoded in A. This transformation model is called the
affine transformation model. Referring to (2.4), the d-th coordinate of points
mapped into the moving image is therefore given by the linear function

yd(x,wd) = td + ad,1x1 + . . .+ ad,DxD, (2.5)

with parameters wd = (td, ad,1, . . . , ad,D)T. Note that these parameters only
contain elements of the d-th row of A and t; the vector w = (wT

1 , . . . ,w
T
D)T

collects all the transformation parameters of the entire D-dimensional model.

In 3D, the affine matrix notation of (2.3) can be used to compute the map-
ping of a voxel coordinate vF in the fixed image into the corresponding voxel
coordinate vM in the moving image as follows:

vM = M−1
M ·M ·MF · vF , (2.6)

where MF and MM denote the voxel-to-world affine matrix of the fixed and
the moving image, respectively.

Rigid transformation: In situations where the moving and the fixed image
were both taken from the same rigid structure (e.g, the head) in the same
subject, the ability of the affine transformation model to arbitrarily scale and
skew images becomes a liability. In those cases, a model that can only account
for a translation and a rotation is more appropriate:

y(x,w) = Rx + t,

where RTR = I and det(R) = 1. This transformation model is called the rigid
transformation model, and is illustrated in Fig. 2.2b. In 2D, rotations can be
enforced by parameterizing the rotation matrix R as follows:

R =

(
cos(α) − sin(α)
sin(α) cos(α)

)
,

where α is a rotation angle. The parameters of this model are therefore w =
(α, t1, t2)T. In 3D there are many possible parametrizations of the rotation
matrix, but one possibility is as follows:

R =

 1 0 0
0 cos(γ) − sin(γ)
0 sin(γ) cos(γ)

 ·
 cos(β) 0 − sin(β)

0 1 0
sin(β) 0 cos(β)

 ·
 cos(α) − sin(α) 0

sin(α) cos(α) 0
0 0 1

 ,

where α, β and γ are three rotation angles; the parameters of the model are
then given by w = (α, β, γ, t1, t2, t3)T.

Provided the affine matrix M is constructed by using A = R, (2.6) remains
valid to map voxel coordinates in the fixed image into voxel coordinates in the
moving image.

20 CHAPTER 2. IMAGE REGISTRATION

(a) Affine transformation

(b) Rigid transformation

(c) Nonlinear transformation

Figure 2.2: Illustration of affine, rigid and nonlinear transformation models.
The red grid shows how the regular grid shown in blue is characteristically
mapped under each transformation model.

2.3. LANDMARK-BASED REGISTRATION 21

2.2.2 Nonlinear transformations

In situations where tissue deformation needs to be modeled, the linear func-
tion (2.5) (one for each dimension d) in affine registration is generalized to
a nonlinear one. Since global differences in overall size and orientation have
typically already been removed using a preceding affine registration1, only the
residual deformation δd is modeled:

yd(x,wd) = xd + δd(x,wd), where δd(x,wd) =

M−1∑
m=0

wd,mφm(x). (2.7)

Here φm(x) are M basis functions, which are typically taken to be separable
(cf. (1.11) and Fig. 1.5), with weights wd = (wd,0, . . . wd,M−1)T. The interpre-
tation of these weights is that, when they are all set to zero (i.e., when wd = 0),
the deformation δd is also zero and no deformation is applied. An illustration
of a nonlinear transformation encoded this way is provided in Fig. 2.2c.

It is worth reiterating that the motion of points along each individual di-
mension d in the moving image is governed by its own set of parameters wd. In
2D, there will therefore by two sets of parameters: w = (w1,w2)T, whereas in
3D there will be three: w = (w1,w2,w3)T.

2.3 Landmark-based registration

One way to register two images is by manually annotating corresponding points
in both images, and then finding a spatial transformation that brings matching
point pairs close to each other. Letting {xn}Nn=1 denote a set ofN point locations
annotated in the fixed image, and {yn}Nn=1 the corresponding locations in the
moving image, registration can be obtained by minimizing the energy

E(w) =

N∑
n=1

‖yn − y(xn,w)‖2

with respect to the transformation parameters w. Here ‖a− b‖2 =
∑D
d=1(ad −

bd)
2 measures the squared Euclidean distance between two points a and b.

Affine transformation: Optimizing E(w) with respect to w will be partic-
ularly straightforward when the mapping in each dimension d is governed by
its own set of parameters wd, as is the case in both the affine and nonlinear
formulation of (2.5) and (2.7). This is because the energy can then be split into

1For instance by replacing the affine voxel-to-world mapping of the fixed image MF by
M ·MF

22 CHAPTER 2. IMAGE REGISTRATION

a sum of D independent energies, one for each dimension:

E(w) =

N∑
n=1

D∑
d=1

[yn,d − yd(xn,wd)]
2

=

D∑
d=1

Ed(wd) with Ed(wd) =

N∑
n=1

[yn,d − yd(xn,wd)]
2
,

where yn,d denotes the d-th element of yn. Optimizing each Ed(wd) with respect
to wd is easy: in both the affine and the nonlinear case, yd(xn,wd) is only
linearly dependent on wd, reducing the problem to the form of linear regression
analyzed in Sec. 1.1. Taking affine registration as an example, the energy for
the d-th dimension is given by (cf. (2.5))

Ed(wd) =

N∑
n=1

[yn,d − td − ad,1xn,1 − . . .− ad,Dxn,D]
2
,

which is minimized at solution
td
ad,1

...
ad,D

 =
(
XTX

)−1
XT

 y1,d
...

yN,d

 , (2.8)

where

X =


1 x1,1 · · · x1,D
1 x2,1 · · · x2,D
...

...
. . .

...
1 xN,1 · · · xN,D

 .

The d-th row of the affine transformation parameters A and t is therefore given
by (2.8). Doing this for all D dimensions yields all the required parameter
values.

Rigid transformation: Optimizing E(w) with respect to w is more involved
when a rigid transformation model is used, since the constraints that RTR = I
and det(R) = 1 prevent us from decoupling the problem across dimensions. For
the translation vector t this is not yet an issue, and we can therefore use the
same approach as before to deduce that, for a given rotation R, the energy

E(w) =

N∑
n=1

‖yn −Rxn − t‖2 (2.9)

is minimized when

t = ȳ −Rx̄, (2.10)

2.4. INTENSITY-BASED REGISTRATION 23

where ȳ = 1
N

∑N
n=1 yn and x̄ = 1

N

∑N
n=1 xn. Plugging this result into (2.9), we

can reformulate the energy as

E(w) =

N∑
n=1

‖ỹn −Rx̃n‖2 where ỹn = yn−ȳ and x̃n = xn−x̄.

Under the constraint RTR = I, this is minimized when [2]

R = VUT,

where U and V are D ×D matrices such that

UTU = I, VTV = I and

N∑
n=1

x̃nỹT
n = UΣVT,

where Σ is diagonal. One such a solution is obtained by computing the singular
value decomposition (SVD) of the matrix

∑N
n=1 x̃nỹT

n . However, this solution
does not necessarily satisfy the second constraint of rotational matrices that
det(R) = 1. It is also possible2 that det(R) = −1, in which case a valid
rotation can be obtained by “flipping” one of the columns of R by reversing the
sign of all the elements in it.

Once R has been found, (2.10) can be used to find the remaining parameters
t.

2.4 Intensity-based registration

Landmark-based registration suffers from a number of shortcomings, including
the need for manually annotating images and the fact that registrations are
computed from only a handful of points. This limits both the efficiency and the
accuracy with which images can be aligned.

Another class of algorithms can perform registrations fully automatically,
by minimizing energies that are computed directly from raw image intensities.
Below we review two well-known methods in this family.

2.4.1 Sum of squared differences

When the fixed and the moving image both depict the same anatomical struc-
tures with the same (or very similar) intensity characteristics, a successful reg-
istration will be characterized by small differences in absolute intensity values
at corresponding locations. Scenarios where this idea can be used include co-
registering two CT scans, where intensity values have a direct physical inter-
pretation, or two MR images acquired with similar pulse sequences on similar
hardware (e.g., T1-weighted images acquired at different time points or from dif-
ferent subjects on the same scanner). In the latter case, images will often still

2Since det(AB) = det(A) det(B), we have that det(R) = det(U) det(V). Furthermore,
det(U)± 1 and det(V)± 1 since UTU = I and VTV = I.

24 CHAPTER 2. IMAGE REGISTRATION

need to be pre-processed to make their intensities comparable (for instance by
intensity rescaling), since MR scanners do not typically provide measurements
in quantitative physical units.

On a technical level, registration can be obtained by minimizing the sum of
squared differences in intensities at corresponding locations:

E(w) =

N∑
n=1

[F(xn)−M(y(xn,w))]
2
. (2.11)

Here, xn are the world coordinates of the voxels in the fixed image, and F(xn)
denotes the image intensity of those voxels. Similarly, M(y(xn,w)) denotes
the image intensities in the moving image, evaluated at the mapped locations
y(xn,w). Since these will generally fall in between original voxel locations in
the moving image, image interpolation will be required (cf. Sec. 1.3.3). When
the mapped location falls outside of the image area of the moving image, a
constant intensity will typically be assigned (for instance zero).

Gauss-Newton optimization

Unlike in landmark-based registration, finding parameter values w that mini-
mize the energy (2.11) is no longer given by closed-form solutions, and numer-
ical optimization methods need to be used. When the number of parameters
of the transformation model is low, for instance in rigid or affine registration,
generic optimization algorithms that only evaluate E(w) (and perhaps its gra-
dient ∇E(w)) will work quite well. For cases with many degrees of freedom,
such as flexible nonlinear deformations, a dedicated optimization “trick” can be
used that exploits the specific structure of the energy (2.11) to obtain faster
solutions.

The method is known as Gauss-Newton, and involves linearizingM(y(xn,w))
with respect to w around the current parameter values. Specifically, for the non-
linear transformation model of (2.7), where deformations are encoded in each
dimension d separately, the partial derivative of M(y(xn,w)) with respect to
wd,m is given by (chain rule):

∂M(y(xn,w))

∂wd,m
=
∂M(y(xn,w))

∂yd

∂yd(xn,wd)

∂wd,m
= gd,n φm(xn). (2.12)

Here the fact that ∂yd(xn,wd)
∂wd,m

= φm(xn) was used, and the notation gd,n =
∂M(y(xn,w))

∂yd
was introduced as shorthand for the partial spatial derivative of the

moving image in the d-th dimension, evaluated at position y(xn,w). By using a
cubic B-spline interpolation model, such spatial derivatives can be conveniently
computed everywhere [3].

For a small deviation ε from some parameter values w, (2.12) can now be
used in a first-order Taylor expansion to obtain the approximation

M(y(xn,w + ε)) 'M(y(xn,w)) +

D∑
d=1

M∑
m=0

(
gd,nφm(xn)

)
εd,m. (2.13)

2.4. INTENSITY-BASED REGISTRATION 25

Plugging this into the energy (2.11), and defining

τn = F(xn)−M(y(xn,w))

we obtain

E(w + ε) '
N∑
n=1

[
τn −

D∑
d=1

M∑
m=0

(
gd,nφm(xn)

)
εd,m

]2
,

which can be recognized has having the form of a linear regression problem
with parameters ε. The value of ε minimizing E(w + ε) is therefore given by
(cf. Sec. 1.1)

ε =
(
ΨTΨ

)−1
ΨTτ (2.14)

where τ = (τ1, . . . , τN)T and

Ψ =
(

G1Φ · · · GDΦ
)
,

where Gd = diag(gd,n, . . . , gd,N) and Φ is given by (1.2).
This result suggests the following simple iterative algorithm for optimizing

E(w):

1. Select a starting value for the transformation parameters, e.g., w = 0 (no
deformation);

2. Use (2.14) to compute a small update ε to the current parameters w;

3. Update the parameters: w← w + ε;

4. Repeat steps 2. and 3. until convergence is detected.

There is one catch, though: In the derivation above, we have assumed that ε
is “small”. What happens if we compute ε and one or more of its components
are actually quite large? Then our approximation (2.13) will have been a poor
one, and we might find that the energy E(w) increases (instead of decreasing)
after we use ε to update w. To avoid such situations, several methods to modify
ε exist. One such a modification is the Levenberg-Marquardt algorithm, which
replaces (2.14) by

ε =
(
ΨTΨ + λI

)−1
ΨTτ , (2.15)

where λ ≥ 0 is a tunable parameter that is typically updated after each iteration.
If the parameter update ε does not decrease E(w), the update is rejected and
λ is increased until a decrease in E(w) is obtained; this will happen eventually
because for very large λ the algorithm devolves into a gradient-descent algorithm
with a small step size. Conversely, if E(w) decreases a smaller λ is used in the
next iteration of the algorithm to improve efficiency.

26 CHAPTER 2. IMAGE REGISTRATION

2.4.2 Mutual Information

When two images need to be aligned that were acquired with two different imag-
ing modalities (e.g., CT vs. MR, or MR vs. PET), the intensity characteristics
of most anatomical structures will generally be quite different between the two
images. This precludes the use of the sum-of-squared-differences energy as a
registration criterion.

In such situations, fully automatic registrations can still be obtained by
optimizing the Mutual Information (MI) between the two images [4, 5]. For
given transformation parameter values w, the frequency with which specific
discretized intensity pairs (f,m) occur is analyzed. Here, f ∈ {1, . . . , B} and
m ∈ {1, . . . , B} denote intensities in the fixed and moving image, respectively,
after both images have been preprocessed to only contain B discrete intensity
levels3. More specifically, a joint histogram

H =

 h1,1 . . . h1,B
...

. . .
...

hB,1 . . . hB,B


is computed, where entry hf,m contains the number of times the intensity in the
fixed image was f , while the corresponding intensity in the moving image was
m. In practice, this is done by starting with an empty joint histogram (H = 0),
and filling it up by looping over all N voxels in the fixed image. For each such
voxel n, its intensity F(xn) as well as the corresponding intensity in the moving
imageM(y(xn,w)) is determined. The former will directly give us a value for f ,
but deciding on m is more involved since y(xn,w) will typically fall somewhere
between the voxels in the moving image. An easy solution is to use nearest-
neighbor interpolation, so that m is simply the intensity of the voxel that is
closest to y(xn,w); however in practice more involved schemes are typically
used. A related issue is what to do if y(xn,w) maps to a location outside of
the image area of the moving image. In many implementations such voxels are
simply skipped (i.e., they do not contribute to the joint histogram). For most
voxels, though, a valid intensity pair (f,m) is obtained; the corresponding joint
histogram count hf,m is then increased by one, and the next voxel in the fixed
image is visited. An example of a joint histogram computed this way is shown
in Fig. 2.3e.

A key insight for registration purposes is that the joint histogram will typi-
cally have many entries with small counts when the two images are well aligned:
most of the encountered intensity combinations (f,m) will be concentrated in
just a few histogram bins. In contrast, when the images are moved out of align-
ment, intensity pairs will become more variable, “smearing out” the counts from
high-count histogram entries into (what were previously) low-count bins. This
process is illustrated in Fig. 2.4. This phenomenon can be exploited to define

3Typically this is done by dividing the intensity range in each image into B contiguous
intervals, and recording the interval (“bin”) number of each voxel’s intensity. Often-used
values for B are 32, 64 or 128.

2.4. INTENSITY-BASED REGISTRATION 27

(a) MR (b) CT

(c) Marginal histogram (MR) (d) Marginal histogram (CT)

(e) Joint histogram

Figure 2.3: An MR and CT image in perfect alignment, along with their nor-
malized (i.e., divided by N) joint and marginal histograms. The number of
histogram bins was B = 32.

28 CHAPTER 2. IMAGE REGISTRATION

the following registration energy:

E(w) = HF,M with HF,M = −
B∑
f=1

B∑
m=1

pf,m log(pf,m),

where pf,m = hf,m/N are normalized histogram counts. These can be inter-
preted as probabilities of seeing specific intensity combinations (f,m) when the
images are aligned with parameter value w. The quantity HF,M is known as
the joint entropy in information theory. It measures how predictable intensity
combinations (f,m) are, and is directly related to data compression: The more
predictable the intensity combinations, the lower the joint entropy and the fewer
bits will theoretically be needed to store or communicate the fixed-moving im-
age pair. Applied to our registration setting, the joint entropy will be higher
when the joint histogram is “smeared out”, which will happen when the images
are not well aligned. This explains why HF,M can be used as an energy function
to drive an automatic registration process.

One problem with using the joint entropy is that it attains low values not just
when registrations are good, but also when some non-desirable trivial solutions
are found. As an example, consider the scenario where w is so that the fixed
image and the moving image only overlap in a region in the background. In most
implementations, the joint histogram is only computed from this overlapping
region, as explained before, and therefore the only intensity pair with a non-
zero count will be the one where both f and m are zero. The joint entropy for
this solution will be zero, which is its lowest possible value.

In order to avoid such pathological solutions, it is customary to alter the
energy as follows:

E(w) = HF,M −HF −HM , (2.16)

where HF and HM are the marginal entropies of the fixed and moving image,
respectively. They are defined as follows:

HF = −
B∑
f=1

pf log(pf) and HM = −
B∑

m=1

pm log(pm),

where pf =
∑B
m=1 pf,m denotes the probability of encountering a voxel with

intensity f in the fixed image, and pm =
∑B
f=1 pf,m the corresponding proba-

bility of encountering intensity m in the moving image. Adding these two terms
to the energy function will steer the registration towards overlapping in areas
that are “interesting” in both images, i.e., areas with actual content (with high
marginal entropy).

Since the quantity HF + HM − HF,M is known in information theory as
mutual information, using its negative as energy function in (2.16) for registra-
tion purposes is known as mutual information-based registration. In a practical
implementation, numerical optimization will need to be used to find values w
with low energy. Currently these are mostly general-purpose optimizers that
only need to be able to evaluate E(w) and its gradient ∇E(w).

2.4. INTENSITY-BASED REGISTRATION 29

(a)

(b)

Figure 2.4: Normalized joint histogram of the MR and CT scans shown in
Fig. 2.3, both when the images are in perfect alignment (a) and when the CT
image is translated with respect to the MR image (b).

30 CHAPTER 2. IMAGE REGISTRATION

Chapter 3

Model-based Segmentation

The ability to efficiently delineate anatomical structures from medical images is
important in many applications. Examples include measuring the number and
volume of lesions and how they change over time, planning radiation therapy
treatments or surgical interventions, and characterizing shape changes that oc-
cur in specific patient groups. The process of delineating structures is called
image segmentation, and automating it has traditionally been approached using
model-based techniques. This chapter reviews some well-established techniques
in this category.

3.1 Generative models

Image segmentation methods are often based on so-called generative models,
i.e., models that describe how images can be generated synthetically by random
sampling from some probability distribution. Generative models for medical
image segmentation generally consist of two parts:

- A prior distribution that makes predictions about where anatomical struc-
tures typically occur throughout the image. We will refer to this compo-
nent of the model as the labeling model. Let l = (l1, . . . , lN)T be a (vector-
ized) label image with a total of N voxels, with ln ∈ {1, . . . ,K} denoting
the one of K possible labels assigned to voxel n, indicating which of the
K anatomical structures the voxel belongs to. The labeling model is then
specified by some probability distribution p(l|θl) that typically depends
on a set of parameters θl.

- A likelihood function that predicts how any given label image, where each
voxel is assigned a unique anatomical label, translates into an image where
each voxel has an intensity. Because this really is a (often very simplis-
tic) model of how a medical imaging device generates images from known
anatomy, we will refer to this component of the model as the imaging

31

32 CHAPTER 3. MODEL-BASED SEGMENTATION

model. Given a label image l, the imaging model generates a correspond-
ing intensity image d = (d1, . . . , dN)T by randomly sampling from some
probability distribution p(d|l,θd) with parameters θd.

In summary, the generative model is fully specified by two parametric distri-
butions p(l|θl) and p(d|l,θd), which depend on parameters θ = (θTl ,θ

T
d)T that

are either assumed to be known in advance, or more frequently, need to be es-
timated from the image data itself. The exact form of the used distributions
depends on the segmentation problem at hand. In general, the more realistic
the models, the better the segmentations that can be obtained with them.

Once the exact generative model has been chosen and appropriate values
θ̂ for its parameters are known, properties of the underlying segmentation of
an image can be inferred by inspecting the posterior probability distribution
p(l|d, θ̂). Using Bayes’ rule, this distribution is given by

p(l|d, θ̂) =
p(d|l, θ̂d)p(l|θ̂l)

p(d|θ̂)
, (3.1)

with p(d|θ̂) =
∑

l p(d|l, θ̂d)p(l|θ̂l)1. For instance, one might look for the seg-

mentation l̂ that has the maximum a posteriori (MAP) probability:

l̂ = arg max
l
p(l|d, θ̂), (3.2)

or estimate the volume of the anatomical structure corresponding to label k by
assessing it’s expected value ∑

l

Vk(l)p(l|d, θ̂) (3.3)

where Vk(l) counts the number of voxels that have label k in l.

3.2 Gaussian mixture model

A very simple generative model that is nevertheless quite useful in practice, is
the so-called Gaussian mixture model. In this model, the segmentation prior is
of the form

p(l|θl) =

N∏
n=1

p(ln|θl) (3.4)

with
p(l = k|θl) = πk, (3.5)

where the parameters θl = (π1, . . . , πK)T consist of a set of probabilities πk
satisfying πk ≥ 0,∀k and

∑K
k=1 πk = 1. In other words, this model assumes

1In practice, one seldom needs to explicitly calculate the denominator p(d|θ̂) be-
cause it doesn’t involve l, and one simply compares alternate segmentations by evaluating
p(d|l, θ̂d)p(l|θ̂l) instead.

3.2. GAUSSIAN MIXTURE MODEL 33

that the labels are assigned to the voxels independently from one another, i.e.,
the probability that a certain label occurs in a particular voxel is unaffected by
the labels assigned to other voxels ((3.4)), and each label occurs, on average,
with a relative frequency of πk ((3.5)).

For the likelihood function, it is assumed that the intensity in each voxel
only depends on the label in that voxel and not on that in other voxels:

p(d|l,θd) =

N∏
n=1

p(dn|ln,θd), (3.6)

and that the intensity distribution associated with each label k is Gaussian with
mean µk and variance σ2

k:

p(d|l = k,θd) = N (d|µk, σ2
k), (3.7)

where

N (d|µ, σ2) =
1√

2πσ2
exp

[
− (d− µ)2

2σ2

]
(3.8)

and θd = (µ1, . . . , µK , σ
2
1 , . . . σ

2
K)T.

It is instructive to write down the probability with which this model gener-
ates a given image d:

p(d|θ) =
∑
l

p(d|l,θd)p(l|θl)

=
∑
l

[
N∏
n=1

N (dn|µln , σ2
ln)

N∏
n=1

πln

]
(3.9)

=

N∏
n=1

p(dn|θ) (3.10)

with

p(d|θ) =

K∑
k=1

N (d|µk, σ2
k)πk. (3.11)

(Although the transition from (3.9) to (3.10) may appear non-trivial, it is merely
algebra and can easily be understood by considering that first the label and then
the intensity is drawn independently in each individual voxel, hence the product
over all voxels in (3.10).) (3.11) explains why this model is called the Gaussian
mixture model: the intensity distribution in any voxel, independent of its spatial
location, is given by the same linear superposition of Gaussians. Since no spatial
information is encoded in the model, it can directly be visualized as a way to
approximate the histogram, as shown in Fig. 3.1.

Because of the assumption of statistical independence between voxels, the
segmentation posterior (3.1) reduces to a simple form that is factorized (i.e.,

34 CHAPTER 3. MODEL-BASED SEGMENTATION

(a)

(b)

Figure 3.1: In the Gaussian mixture model, the histogram is described as a linear
superposition of Gaussian distributions: (a) MR scan of the head, after remov-
ing all non-brain tissue and other pre-processing steps; and (b) corresponding
histogram and its representation as a sum of Gaussians.

3.2. GAUSSIAN MIXTURE MODEL 35

Figure 3.2: Visualization of the segmentation posterior corresponding to the
data and model of Fig. 3.1. High intensities correspond to high probabilities
and vice versa.

appears as a product) over the voxels:

p(l|d, θ̂) =
p(d|l, θ̂d)p(l|θ̂l)

p(d|θ̂)

=

∏N
n=1N (dn|µ̂ln , σ̂2

ln
)
∏N
n=1 π̂ln∏N

n=1

∑K
k=1N (dn|µ̂k, σ̂2

k)π̂k

=

N∏
n=1

p(ln|dn, θ̂), (3.12)

where

p(l = k|d, θ̂) =
N (d|µ̂k, σ̂2

k)π̂k∑K
k′=1N (d|µ̂k′ , σ̂2

k′)π̂k′
. (3.13)

Therefore, the segmentation posterior is fully specified by each voxel’s K pos-
terior probabilities of belonging to each structure; such segmentation posteriors
can be visualized as images where high and low intensities correspond to high
and low probabilities, respectively. The segmentation corresponding to the im-
age and Gaussian mixture model of Fig. 3.1 is visualized in 3.2 this way. Evi-
dently, the sum of all the structures’ posterior probabilities add to one in each
voxel:

∑K
k=1 p(ln = k|dn, θ̂) = 1,∀n.

Because of the factorized form of the segmentation posterior, the MAP seg-
mentation (3.2) is simply given by

l̂ = arg max
l
p(l|d, θ̂) = arg max

l1,...,lN

N∏
n=1

p(ln|dn, θ̂), (3.14)

i.e., each voxel is assigned exclusively to the label with the highest posterior
probability. Similarly, the expected volume of the anatomical structure corre-

36 CHAPTER 3. MODEL-BASED SEGMENTATION

sponding to label k is given by (3.3)

∑
l

Vk(l)p(l|d, θ̂) =

N∑
n=1

p(k|dn, θ̂), (3.15)

i.e., a “soft” count of voxels belonging to the structure, where voxels contribute
according to their posterior probability of belonging to that structure.

3.3 Markov random field priors

It is worth emphasizing that in the Gaussian mixture model, a voxel’s posterior
probability of belonging to each of the K structures is computed using only the
local intensity of the voxel itself ((3.13)). Although this works quite well in some
applications, there is often an intensity overlap between the to-be-segmented
structures, causing severe segmentation errors in such a purely intensity-driven
strategy. An example of this is shown in Fig. 3.3, where a simple Gaussian
mixture model with K = 2 classes was used to segment a brain MR scan into
tumor tissue and other structures. The parameters θ̂ were obtained by manu-
ally clicking on a set of representative voxels within the tumor, recording their
intensities, and computing their mean and variance as estimates of µ̂1 and σ̂2

1 ,
respectively; the mean and variance {µ̂2 σ̂

2
2} for the “other” class was simply

the mean and variance of all the image’s voxels’ intensities; and the tumor was
estimated to cover approximately one tenth of the image area, so that we used
π̂1 = 0.1 and π̂2 = 0.9. It can be seen from the figure that while this model
generally captures the tumor quite well, many small image areas outside of the
tumor also have a high posterior probability of belonging to the tumor class,
limiting the usefulness of the results.

In order to avoid this type of segmentation errors, we need to use more
advanced models for the prior distribution p(l|θl) that more realistically reflect
the shape of the structures we are looking for.

3.3.1 Markov random field model

An often-used improvement to the simplistic prior of (3.5) is to use a prior that
explicitly prefers voxels with the same label to be clustered spatially rather than
scattered randomly throughout the image area. A computationally attractive
way of achieving this is to formulate the prior as

p(l|θl) =
1

Z(θl)
exp(−U(l|θl)), (3.16)

where U(l|θl) is an “energy” functional that is high for undesired configura-
tions of l and low otherwise, resulting in low prior probabilities of undesired
configurations and high probabilities otherwise. Z(θl) =

∑
l exp(−U(l|θl)) is

a normalizing constant that ensures that
∑

l p(l|θl) = 1 but typically does not
need to be computed explicitly in practical situations.

3.3. MARKOV RANDOM FIELD PRIORS 37

(a) (b)

Figure 3.3: The Gaussian mixture model does not encode any spatial infor-
mation and is therefore susceptible to segmentation errors caused by intensity
overlap between the structures of interest: (a) a brain MR scan of a person with
a tumor; and (b) the voxels’ posterior probability of belonging to the tumor for
a 2-component Gaussian mixture model.

For reasons that will soon become clear, the energy functional is often chosen
to be of the form

U(l|θl) = β
∑
(n,n′)

δ(ln 6= ln′), (3.17)

where the sum is running over all the voxel pairs (n, n′) that are neighbors in
the image grid (for instance, each voxel has six direct neighbors in a 3-D image
grid, or 26 if also the diagonal directions are allowed), δ(k 6= l) equals zero
if k = l and one otherwise, and β is a parameter that controls how strongly
undesired configurations are penalized. Stated differently, the energy functional
is proportional to the number of times two neighboring voxels have a different
class assignment in l, thereby encouraging configurations in which the labels
are spatially clustered. Prior knowledge that some classes tend to occur more
frequently than others can also be incorporated by adding an extra term:

U(l|θl) = β
∑
(n,n′)

δ(ln 6= ln′)−
N∑
n=1

log(πln). (3.18)

The parameters of this model are θl = (β, π1, . . . , πK)T; for β = 0 (no undesired
pair-wise combination penalized) this model reduces to the standard Gaussian
mixture prior of (3.5).

The computational attractiveness of the model lies in the fact that, although
it defines a global prior that induces statistical dependencies between labels in
voxels that are far apart, calculating the conditional distribution in a single voxel
requires only looking up the labels assigned to its neighboring voxels (so-called
Markov property). Indeed, using the notation l\n = (l1, . . . , ln−1, ln+1, . . . , ln)T

38 CHAPTER 3. MODEL-BASED SEGMENTATION

to denote the vector of labels in all voxels except voxel n, and Nn the set of
voxels that form neighboring pairs with voxel n, we have (Bayes’ rule)

p(ln|l\n) =
p(l)

p(l\n)

=
p(l)∑
ln
p(l)

=
exp(−U(l|θl))∑
ln

exp(−U(l|θl))

=
exp

(
− β

∑
n′∈Nn

δ(ln′ 6= ln) + log πln
)∑K

k=1 exp
(
− β

∑
n′∈Nn

δ(ln′ 6= k) + log πk
)

=
πln · exp

(
− β

∑
n′∈Nn

δ(ln′ 6= ln)
)∑K

k=1 πk · exp
(
− β

∑
n′∈Nn

δ(ln′ 6= k)
) . (3.19)

The second to last step is explained by the fact that all the remaining terms of
(3.18) cancel out in the numerator and the denominator.

Comparing (3.19) to the standard Gaussian mixture prior, the probability
of having label k in voxel n is no longer simply πk, but changes according to the
labels assigned to its neighboring voxels. If the majority of neighbors has label
k, for instance, the probability of having k in n will be higher than πk.

3.3.2 Inference using the mean-field approximation

Combining the more advanced Markov random field prior with the same likeli-
hood as before, in which the intensity in each voxel is distributed according to
a Gaussian associated with its label ((3.6) and (3.7)), we can in principle eval-
uate possible segmentations by comparing their posterior p(l|d, θ̂). However,
handling this posterior explicitly is difficult in practice because it can no longer
be written as a simple product of voxel-wise contributions in the same way as
before ((3.12)).

There exist fast algorithms, based on so-called graph-cuts, for computing
the MAP segmentation l̂ = arg maxl p(l|d, θ̂) [6]. However, we are sometimes
more interested in calculating expectations, for instance in order to estimate
volumes of anatomical structures ((3.3)) or as part of Expectation-Maximization
parameter optimizers (which we will cover in Sec. 3.4). Since this involves
summing over all possible configurations of l, it is infeasible to do the necessary
computations exactly because there are exponentially many configurations of l:
a segmentation problem with just K = 2 classes of a standard MR image of size
256× 256× 128 voxels yields more than 101000000 configurations to sum over2!

The solution is to resort to approximation schemes, of which one is a vari-
ational method based upon the so-called mean field theory in physics. In this
method, we seek a distribution q(l) that we design to be of a more tractable

2As a comparison, there are approximately 1080 atoms in the universe.

3.3. MARKOV RANDOM FIELD PRIORS 39

form than p(l|d, θ̂), while still approximating p(l|d, θ̂) as well as possible. One
possibility is to impose the factorized form of the posterior of the standard
Gaussian mixture model ((3.12)) on q(l), i.e., we chose q(l) to be of the form

q(l) =

N∏
n=1

qn(ln). (3.20)

Within this family, our task is to chose the voxel-wise distributions qn(·) in
such a way that the resulting joint distribution q(l) approximates p(l|d, θ̂) as
accurately as possible. For this purpose, we minimize the so-called Kullback-
Leibler (KL) divergence

KL
(
q(l) || p(l|d, θ̂)

)
= −

∑
l

q(l) log
p(l|d, θ̂)

q(l)
, (3.21)

which measures how different q(l) is from p(l|d, θ̂): it is always positive, and
zero only if our approximation q(l) equals the true posterior p(l|d, θ̂) exactly
(which will typically be unattainable because we restrict the form of q(l) to
(3.20)).

For a given set of distributions qn′(·) in all voxels n′ 6= n, it can be shown [7]
that the remaining voxel’s distribution qn(·) that minimizes the KL-divergence
is given by

qn(ln = k) =
N (dn|µ̂k, σ̂2

k)γn(ln = k)∑K
k′=1N (dn|µ̂k′ , σ̂2

k′)γn(ln = k′)
(3.22)

with

γn(ln = k) =
π̂k · exp

(
− β

∑
n′∈Nn

(1− qn′(ln′ = k))
)∑K

k′=1 π̂k′ · exp
(
− β

∑
n′∈Nn

(1− qn′(ln′ = k′))
) . (3.23)

Comparing this with the voxel-wise posterior of the standard Gaussian mixture
model (3.13), it can be seen that the usual class priors πk are replaced with
altered priors γn(k) that take the local neighborhood of the voxels into account:
as in (3.19), the number of neighboring voxels “assigned” to a different class is
“counted” (in a soft, weighted sense) and alters πk accordingly.

Note that (3.22) gives the optimal distribution qn(k) for one voxel at a time,
but that this result depends in turn on the result in other voxels. Therefore, a
common strategy to minimize the KL-divergence is to cycle through the voxels
in turn, updating each voxel’s qn(k) based on the current result in the other
voxels, and to continue this process until some convergence criterion is satisfied.
With such a minimization strategy, the order in which the voxels are visited as
well as the initialization of the qn(ln)’s may affect the local optimum of the KL
divergence we arrive at.

A segmentation example on the tumor data of fig. 3.3 is shown in fig. 3.4,
for different values of the Markov random field parameter β. It can be seen
that the more advanced priors add contextual information that improves the
segmentation results.

40 CHAPTER 3. MODEL-BASED SEGMENTATION

(a) β = 0.25 (b) β = 0.55

Figure 3.4: Visualization of the mean-field approximation to the segmentation
posterior for the tumor data of Fig. 3.3, for different settings of the Markov
random field parameter β.

Once the voxel-wise distributions qn(ln) have been computed, they can be
used in the same way as the distributions p(ln|dn, θ̂) to approximate expecta-
tions, e.g., the expected volume of the structure with label k is approximately
given by ∑

l

Vk(l)q(l) =

N∑
n=1

qn(ln). (3.24)

3.4 Parameter optimization using the EM algo-
rithm

So far we have assumed that appropriate values θ̂ of our model parameters are
known in advance. In the tumor segmentation example of the previous section,
these parameters were estimated by manually clicking on some representative
points in the image, and collecting statistics on the intensity of the selected
voxels. In general, however, such a strategy is impractical for such a versatile
imaging modality as MRI, where intensities do not directly correspond to any
physical properties of the tissue being scanned. By merely tweaking the imaging
protocol, upgrading the scanner, or collecting images from different scanner
models or manufacturers, the values of θ̂ become inappropriate and need to be
constructed again using manual interaction.

This difficulty can be avoided by estimating appropriate values for the model
parameters automatically for each individual scan, i.e., each scan receives its
own, well-suited set of parameters that are computed without requiring any
manual interaction. This can be accomplished by estimating the parameters
that maximize the so-called likelihood function p(d|θ), which expresses how
probable the observed image d is for different settings of the parameter vector

3.4. PARAMETER OPTIMIZATION USING THE EM ALGORITHM 41

θ:

θ̂ = arg max
θ

[p(d|θ)]

= arg max
θ

[log p(d|θ)] . (3.25)

The last step is true because the logarithm is a monotonically increasing func-
tion of its argument; it is used here because maximizing the log likelihood
function instead of the likelihood function directly simplifies the mathematical
analysis considerably, and also avoids numerical underflow problems in practi-
cal computer implementations. The parameter vector θ̂ resulting from (3.25) is
commonly called the maximum likelihood (ML) parameter estimate.

Maximizing the log likelihood function in image segmentation problems is
a non-trivial optimization problem for which iterative numerical algorithms are
needed. Although a variety of standard optimization methods could potentially
be used, for the Gaussian mixture model discussed in Sec. 3.2 a dedicated and
highly effective optimizer is available in the form of the so-called expectation-
maximization algorithm (EM)3. The EM algorithm belongs to a family of op-
timization methods that work by repeatedly constructing a lower bound to the
objective function, maximizing that lower bound, and repeating the process un-
til convergence [8]. This process is illustrated in Fig. 3.5. For a given starting
estimate of the model parameters θ̃, a function of the model parameters Q(θ|θ̃)
is constructed that equals the log likelihood function at θ̃:

Q(θ̃|θ̃) = log p(d|θ̃), (3.26)

but that otherwise never exceeds it:

Q(θ|θ̃) ≤ log p(d|θ), ∀θ. (3.27)

The parameter vector maximizing Q(θ|θ̃) is then computed and used as the
new parameter estimate θ̃, after which the whole process is repeated. Critically,
because of (3.26) and (3.27), updating the estimate θ̃ to the parameter vector
that maximizes the lower bound automatically guarantees that the log likelihood
function increases, by at least the same amount as the lower bound has increased.
The consecutive estimates θ̃ obtained this way are therefore increasingly better
estimates of the maximum likelihood parameters – one is guaranteed to never
move in the wrong direction in parameter space. This is a highly desirable
property for a numerical optimization algorithm.

While it is of course always possible to construct a lower bound to an objec-
tive function, nothing is gained if optimizing the lower bound is not significantly
easier and/or faster to perform than optimizing the objective function directly.
However, in the case of the Gaussian mixture model, it turns out it is possible to
construct a lower bound for which the parameter vector maximizing it is given
directly by analytical expressions. Therefore, the resulting algorithm effectively

3For more complex models with Markov random field priors, an approximate EM algorithm
is obtained by replacing the voxel-wise posteriors with their mean-field approximations.

42 CHAPTER 3. MODEL-BASED SEGMENTATION

(a) (b)

(c) (d)

(e) (f)

Figure 3.5: In the EM algorithm the maximum likelihood parameters θ̂ are
sought by repeatedly constructing a lower bound to the log likelihood function,
in such a way that the lower bound touches the log likelihood function exactly
at the current parameter estimate θ̃ (a). Subsequently the parameter estimate
θ̃ is updated to the parameter vector that maximizes the lower bound (b). A
new lower bound is then constructed at this new location (c) and maximized
again (d), and so forth ((e) and (f)), until convergence. In these plots, the log
likelihood function is represented by a full line, and the successive lower bounds
with a broken line.

3.4. PARAMETER OPTIMIZATION USING THE EM ALGORITHM 43

breaks up a difficult maximization problem (of the log likelihood function) into
many smaller ones (of the lower bound) that are trivial to solve. Combined
with the guarantee of increasingly better estimates of the maximum likelihood
parameters as iterations progress, it should be clear why this algorithm is a
popular choice for maximum likelihood estimation of Gaussian mixture model
parameters.

The trick exploited by the EM algorithm to construct its lower bound is
based on the property of the logarithm that it is a concave function, i.e., every
chord connecting two points on its curve lies on or below that curve (see Fig. 3.6).
Mathematically, this means that

log [wx1 + (1− w)x2] ≥ w log x1 + (1− w) log x2

for any two points x1 and x2 and 0 ≤ w ≤ 1. It is trivial to show that this also
generalizes to more than two variables, (so-called Jensen’s inequality):

log(

K∑
k=1

wkxk) ≥
K∑
k=1

wk log xk (3.28)

where wk ≥ 0 and
∑K
k=1 wk = 1, for any set of points {xk}. This can now be

used to construct a lower bound to the likelihood function of the Gaussian mix-
ture model as follows. Recalling that p(d|θ) =

∏N
n=1

[∑K
k=1N (dn|µk, σ2

k)πk

]
((3.10) and (3.11)), we have that

log p(d|θ) = log

(
N∏
n=1

[
K∑
k=1

N (dn|µk, σ2
k)πk

])
(3.29)

=

N∑
n=1

log

[
K∑
k=1

N (dn|µk, σ2
k)πk

]
(3.30)

=

N∑
n=1

log

[
K∑
k=1

(
N (dn|µk, σ2

k)πk
ωn,k

)
ωn,k

]
(3.31)

≥
N∑
n=1

[
K∑
k=1

ωn,k log

(
N (dn|µk, σ2

k)πk
ωn,k

)]
︸ ︷︷ ︸

Q(θ|θ̃)

, (3.32)

for any set of weights {ωn,k} that satisfy ωn,k ≥ 0 and
∑K
k=1 ωn,k = 1 (the last

step relies on (3.28)). We now have a lower bound function Q(θ|θ̃) that satisfies
(3.27), but not (3.26), so we are not done yet. Instead of randomly assigning
any valid K weights ωn,k to each voxel n (one weight for each label k), we can
satisfy (3.26) by choosing the weights so that

ωn,k =
N (dn|µ̃k, σ̃2

k)π̃k∑K
k′=1N (dn|µ̃k′ , σ̃2

k′)π̃k′
. (3.33)

44 CHAPTER 3. MODEL-BASED SEGMENTATION

Figure 3.6: Because the logarithm is a concave function, the cord between any
two points on its curve lies on or below the curve. An example cord is shown in
blue.

By filling these weights into the definition of our lower bound (3.32), it is easy
to check that (3.26) is indeed fulfilled with this choice.

Setting the new model parameter estimate θ̃ to the parameter vector that
maximizes the lower bound requires finding the location where

∂Q(θ|θ̃)

∂θ
= 0.

Reformulating the lower bound as

Q(θ|θ̃) = −1

2

K∑
k=1

[
1

σ2
k

N∑
n=1

ωn,k (dn − µk)
2

+

(
N∑
n=1

ωn,k

)
log σ2

k

]

+

K∑
k=1

[(
N∑
n=1

ωn,k

)
log πk

]

−
N∑
n=1

K∑
k=1

ωn,k logωn,k −
N

2
log (2π) , (3.34)

it is straightforward to show that the parameter updates are given by

µ̃k ←
∑N
n=1 ωn,kdn∑N
n=1 ωn,k

σ̃2
k ←

∑N
n=1 ωn,k (dn − µ̃k)

2∑N
n=1 ωn,k

(3.35)

π̃k ←
∑N
n=1 ωn,k
N

.

3.5. MODELING MR BIAS FIELDS 45

(a) Initialization (b) After one iteration

(c) After 11 iterations (d) After 30 iterations

Figure 3.7: Iterative improvement of the Gaussian mixture model parameters
for the MR image of Fig. 3.1a, using the EM algorithm.

It is worth spending some time thinking about these equations. The EM
algorithm searches for the maximum likelihood parameters of the Gaussian mix-
ture model merely be repeatedly applying the update rules of (3.35), where the
weights ωn,k are defined in (3.33). These weights depend themselves on the
current estimate of the model parameters, which explains why the algorithm
involves iterating. More importantly, by comparing (3.33) to (3.13), we see that
these weights represent nothing but the posterior probability of the segmen-
tation, given the current model parameter estimate! Thus, the EM algorithm
repeatedly computes the type of probabilistic segmentation shown in Fig. 3.2
based on its current parameter estimate, and then updates the parameter es-
timate accordingly. The update rules of (3.35) are remarkably intuitive: the
mean and variance of the Gaussian distribution associated with the kth label
are simply set to the weighted mean and variance of the intensities of those
voxels currently attributed to that label; similarly the prior for each class is set
to the fraction of voxels currently attributed to that class.

Fig. 3.7 shows a few iterations of the EM algorithm searching for the maxi-
mum likelihood parameters of the brain MR data shown in Fig. 3.1a.

3.5 Modeling MR bias fields

Although the Gaussian mixture model is a very useful tool for image segmen-
tation, and comes with a an dedicated parameter estimation algorithm, it can
often not be applied directly to MR images. This is because MR suffers from an
imaging artifact that makes some image areas darker and other areas brighter
than they should be. This spatially smooth variation of intensities is often re-
ferred to as MR “intensity inhomogeneity” or “bias field”, and is caused by
imaging equipment limitations and electrodynamic interactions with the object
being scanned. Interestingly, the bias field artifact is dependent on the anatomy

46 CHAPTER 3. MODEL-BASED SEGMENTATION

(a) 1.5 Tesla (b) 3 Tesla (c) 7 Tesla

Figure 3.8: The MR bias field artifact is often more pronounced in scanners
operating at higher magnetic field strengths.

being imaged and therefore unique to each scan session, and is much more pro-
nounced in the newest generation of scanners (see Fig. 3.8).

Since the Gaussian mixture model does not account for smoothly varying
overall intensity levels within one and the same anatomical structure, it is very
susceptible to segmentation errors when applied to typical MR data. However,
this problem can be avoided by explicitly taking a model for the bias field artifact
into account in the imaging component of the generative model. In particular,
we can model the artifact as a linear combination of M spatially smooth basis
functions

M−1∑
m=0

cmφn,m, (3.36)

where φn,m is shorthand for φm(xn), the value of the mth basis function evalu-
ated at voxel n, which has spatial location xn. Suitable basis functions can be
2D DCT basis functions, 2D B-spline basis functions (such as those shown in
Fig. 1.5), or something similar. We can then extend the imaging model of the
Gaussian mixture model by still assigning each voxel an intensity drawn from
a Gaussian distribution associated with its label, but further adding4 the bias
model to the resulting intensity image to obtain the final, bias field corrupted
image d. With this model, we have

p(d|l,θd) =

N∏
n=1

N
(
dn

∣∣∣µln +

M∑
m−1

cmφn,m, σ
2
ln

)
(3.37)

with parameters θd = (µ1, . . . , µK , σ
2
1 , . . . , σ

2
K , c0, . . . , cM−1)T, which consist

not only of the parameters associated with the Gaussian distributions, but ad-
ditionally also the M coefficients of the bias field basis functions, cm.

4Because of the physics of MR, the bias field is better modeled as a multiplicative rather
than an additive artifact. This can be taken into account by working with logarithmically
transformed intensities in the models, instead of using directly the original MR intensities.

3.5. MODELING MR BIAS FIELDS 47

As was the case with the Gaussian mixture model, model parameter estima-
tion can be performed conveniently by iteratively constructing a lower bound
to the log likelihood function, and working with that lower bound instead. For
constructing the lower bound in this case, we follow the exact same procedure
as in the previous section to obtain

Q(θ|θ̃) = −1

2

K∑
k=1

 1

σ2
k

N∑
n=1

ωn,k

(
dn − µk −

M∑
m−1

cmφn,m

)2

+

(
N∑
n=1

ωn,k

)
log σ2

k


+

K∑
k=1

[(
N∑
n=1

ωn,k

)
log πk

]

−
N∑
n=1

K∑
k=1

ωn,k logωn,k −
N

2
log (2π) , (3.38)

where now the weights satisfying (3.26) are given by

ωn,k =
N
(
dn

∣∣∣µ̃k +
∑M
m−1 c̃mφn,m, σ̃

2
k

)
π̃k∑

k′ N
(
dn

∣∣∣µ̃k′ +
∑M
m−1 c̃mφn,m, σ̃

2
k′

)
π̃k′

. (3.39)

Maximizing this lower bound is more complicated than in the Gaussian mixture
model, however, because setting the derivative with respect to the parameter
vector θ to zero no longer yields analytical expressions for the parameter update
rules. If we keep the bias field parameters fixed at their current values c̃m, and
only maximize the lower bound with respect to the Gaussian mixture model
parameters, we easily obtain

µ̃k ←

∑N
n=1 ωn,k

(
dn −

∑M
m−1 c̃mφn,m

)
∑N
n=1 ωn,k

σ̃2
k ←

∑N
n=1 ωn,k

(
dn −

∑M
m−1 c̃mφn,m − µ̃k

)2
∑N
n=1 ωn,k

(3.40)

π̃k ←
∑N
n=1 ωn,k
N

.

Similarly, keeping the Gaussian mixture model parameters fixed at their current
values, it is easy to see that the bias field parameters maximizing the lower
bound are given in analytical form as well: the lower bound is a quadratic
function of the coefficients cm, and finding their optimal values is therefore
merely a linear basis function regression problem (see Sec. 1.1). In particular,
the solution is given by

c̃ ← (ΦTPΦ)−1ΦTPr (3.41)

48 CHAPTER 3. MODEL-BASED SEGMENTATION

where Φ is given by (1.2) and

pn,k =
ωn,k
σ̃2
k

, pn =

K∑
k=1

pn,k, P = diag(p1, . . . , pN),

d̃n =

∑K
k=1 pn,kµ̃k∑K
k=1 pn,k

, r =

 d1 − d̃1
...

dN − d̃N

 .

Since (3.40) and (3.41) depend on one another, one could in principle try
to maximize the lower bound by cycling through these two equations, one at a
time, until some convergence criterion is met. However, the desirable property
of the EM algorithm to never decrease the value of the likelihood function with
each new iteration still holds even when the lower bound is not maximized but
merely improved. Therefore, a more efficient strategy is to construct the lower
bound by computing the weights ωn,k ((3.39)) and then update the Gaussian
mixture model parameters ((3.40)) and subsequently the bias field parameters
((3.41)) only once to merely improve it. After that a new lower bound is con-
structed by recomputing the weights, which is again improved by updating the
model parameters, etc, until convergence. Such an optimization strategy of
only partially optimizing the EM lower bound is known as so-called generalized
expectation-maximization.

The interpretation of the update equations is again very intuitive. As was
the case in the Gaussian mixture model, the weights ωn,k represent again a
statistical classification of the image voxels as in Fig. 3.2, and the mixture
model parameters are again updated accordingly. The only difference now is
that instead of the original MR intensities, dn, the bias field corrected intensities,
dn −

∑M
m−1 c̃mφn,m, i.e., the intensities after the estimated bias field has been

subtracted, are used. Regarding the bias field update, the algorithm tries to
make a reconstruction (d̃1, . . . , d̃N)T of what the image should look without the
bias field artifact (shown in Fig. 3.9b), subtracts that from the MR scan to
obtain a (noisy) estimate of the bias field (image r, shown in Fig. 3.9c), and
smoothes the result to obtain an estimate of the bias field (shown in Fig. 3.9e).
For the smoothing, each voxel has a weight pn (shown in Fig. 3.9d) that depends
on the variance of the class it is attributed to, reflecting the confidence in the
local value of r (classes with tighter variances are more trustable than classes
with very large variances).

By extending the Gaussian mixture model with an explicit model for the
bias field artifact this way, it is possible to obtain high-quality segmentations
of MR scans without errors caused by intensity inhomogeneities, as shown in
Fig. 3.10.

3.5. MODELING MR BIAS FIELDS 49

(a) MR scan (b) Reconstruction (c) Difference between the
MR scan and the recon-
struction

(d) Weight image (e) Estimated bias field

Figure 3.9: Illustration of the bias field estimation within a generalized
expectation-maximization algorithm.

50 CHAPTER 3. MODEL-BASED SEGMENTATION

(a)

(b)

(c)

(d)

Figure 3.10: Explicitly modeling and estimating the bias field artifact in MR
scans often improves segmentation results considerably. Shown are a few sagittal
slices from a brain MR scan (a); the posterior probability for white matter using
the standard Gaussian mixture model (b); the same when a bias field model is
explicitly taken into account (c); and the automatically estimated bias field
model (d). Note the marked improvement in segmentation accuracy in the
upper parts of the brain.

Chapter 4

Neural Networks

The methods for registration and segmentation that we have seen so far are
all based on models that somehow encode prior knowledge of the problem at
hand. For instance, mutual information-based registration exploits the fact that
one image is predictive of another image only when the two are well aligned;
while the Gaussian mixture model for segmentation encodes the knowledge that
voxels with the same label typically have similar intensities.

A completely different approach to solving a problem is not to try to un-
derstand it, but rather to simply emulate successful example solutions. As
opposed to the generative models of Chapter 3, this approach to model-free
“machine learning” is called discriminative learning. In this chapter we will
review a specific class of discriminative methods based on artificial neural net-
works. Although such networks can also be used for other purposes, such as
image registration and computer aided diagnosis, they are especially successful
in the area of image segmentation, which we will focus on in this chapter.

In general, it should be noted that sidestepping the difficulty of building
models is both the main strength and the most important weakness of neural
networks. As long as sufficient example solutions are available, they are very
easy to deploy without requiring any domain-specific knowledge, and can be
orders of magnitude faster than model-based methods. On the other hand,
however, example solutions are often in short supply in medical image analysis,
as manually annotating a large set of images can be excruciatingly time con-
suming. Especially in versatile imaging modalities such as MRI, this problem
is exacerbated by the differences in scanning hardware, software and protocols
that exist even within the same hospital, which can make carefully curated
example solutions useless overnight.

4.1 Logistic regression

In Chapter 3 we saw how the Gaussian mixture model can be used to classify
each image voxel into one of K different classes (tissue types) based on its inten-

51

52 CHAPTER 4. NEURAL NETWORKS

sity alone. Specifically, we modeled the prior probability of a voxel belonging to
class k as πk, and the intensity distribution associated with class k as a Gaus-
sian with mean µk and variance σ2

k. Using Bayes’ rule, we then obtained the
probability of a voxel having label l as (cf. ((3.13)))

p(l = k|d,θ) =
N (d|µk, σ2

k)πk∑
k′ N (d|µk′ , σ2

k′)πk′
, (4.1)

where d is the voxel’s intensity and θ are the parameters of the model (collecting
πk, µk and σ2

k for all classes).
Rather than using such models, another way of obtaining a voxel-wise clas-

sifier p(l|d,θ) is by simply mimicking the behavior seen in (“learning from”)
examples. For reasons that will soon become clear, for the remainder of this
chapter we will switch to the notation used for regression in Chapter 1, indi-
cating a training set of observed example inputs and outputs as {xn, tn}Nn=1,
where xn is the D-dimensional vector of observed inputs for the nth case, and tn
the corresponding output. For voxel-wise classification, each input is simply an
intensity xn = dn, i.e., the input dimensionality is D = 1, but we will soon see
cases where xn is higher-dimensional. Unlike in the regression case, where each
output tn was a continuous value, for classification the outputs can only take
K discrete values, indicating which class each example belongs to. To simplify
notation, here we only consider scenarios with K = 2 classes1. The outputs
can then be denoted as taking binary values tn ∈ {0, 1}, where values 1 and 0
correspond to the class assignments ln = 1 and ln = 2, respectively.

To model p(y|x,θ) – which is equivalent to modeling p(l|d,θ) in our voxel-
wise classification example – we start from a parametric curve of the form

f(x) = σ

(
M−1∑
m=0

wmφm(x)

)
, (4.2)

which is similar to the linear basis function model for regression we saw in
Sec. 1.1: A linear combination of M nonlinear basis functions φm(x) with
tunable coefficients wm, which we here collect in the parameter vector θ =
(w0, . . . , wM−1)T. Unlike in the regression case, however, where the quantity

a =

M−1∑
m=0

wmφm(x) (4.3)

was used directly, here it is subject to a “squashing” function (illustrated in
Fig. 4.1)

σ(a) =
1

1 + exp(−a)
(4.4)

that maps the result into the interval [0, 1]. Because of this mapping, f(x) can
be interpreted as a probability: p(t = 1|x,θ) = f(x). Since p(t = 0|x,θ) =

1The generalization to several classes is rather straightforward (cf. [9], chapter 4).

4.2. TRAINING WITH STOCHASTIC GRADIENT DESCENT 53

Figure 4.1: The logistic function σ(a) defined in ((4.4)) maps the domain
[−∞,∞] into [0, 1].

1− p(t = 1|x,θ) = 1− f(x), we can then write (Bernoulli distribution):

p(t|x,θ) = f(x)t[1− f(x)]1−t. (4.5)

Because the mapping function σ(a) in ((4.4)) is called the “logistic function”,
the model of ((4.2)) is known as “logistic regression”.

Given our training set of N input observations X = {x1, . . . ,xN} with corre-
sponding outputs t = {t1, . . . , yN}, appropriate values for the model parameters
θ̂ can be found by numerically maximizing the likelihood function

p(t|X,θ) =

N∏
n=1

p(tn|xn,θ) (4.6)

with respect to θ. Once fitted this way, the model can subsequently be used to
classify new voxels simply by evaluating

p(l = 1|d, θ̂) = p(t = 1|x, θ̂) = σ

(
M−1∑
m=0

ŵmφm(x)

)
,

and assigning a voxel to class 1 if p(l = 1|d, θ̂) > 0.5 and to class 2 otherwise.
Fig. 4.2 illustrates this procedure on an MRI scan of the kidneys, using the

five 1D cosines of Fig. 1.1a as basis functions φm(x) and N = 50 training points.

4.2 Training with stochastic gradient descent

So far we have not specified how to numerically optimize ((4.6)) during train-
ing. For the specific case of logistic regression, there exists a dedicated algo-
rithm called iterative reweighted least squares (IRLS) that finds θ̂ by iteratively

54 CHAPTER 4. NEURAL NETWORKS

(a) (b) (c)

(d) (e)

Figure 4.2: Example of a logistic regression classifier trained to discern pixels in
the inner organs from pixels in other areas. (a) Image to be segmented, along
with training data consisting of 25 manually selected points inside (l = 1, blue
circles) and 25 points outside (l = 2, red crosses) the area of interest. (b) The
output p(l = 1|d, θ̂) of the trained classifier, evaluated in each pixel. (c) Final
segmentation produced by the trained classifier, overlaid on top of the input
image. (d) The quantity a of ((4.3)) for various intensity levels d. (e) The
classifier resulting from subjecting a to the squashing function σ(a) of ((4.4)).
For reference, the intensity levels and labels of the 50 training points are also
shown.

4.3. FEED-FORWARD NETWORK FUNCTIONS 55

mapping the problem to a regression problem, which is then solved using tools
similar to those described in Chapter 1. However, for the more general case of
feed-forward neural networks, which we will soon discuss, IRLS cannot be used
and optimization is typically performed using variants of stochastic gradient
descent, described next.

Maximizing the likelihood function p(y|X,θ) is equivalent to minimizing
its negative logarithm. Using ((4.5)) and ((4.6)), training therefore consists of
minimizing the energy function

EN (θ) = − log p(t|X,θ) = −
N∑
n=1

{tn log f(xn) + (1− tn) log [1− f(xn)]} ,

(4.7)
which is known in the machine learning community as cross-entropy. Start-
ing from some (e.g., random) initial estimate θ(0), standard gradient descent
proceeds by iteratively stepping in the direction of steepest descent:

θ(τ+1) = θ(τ) − ν ∇EN (θ(τ)),

where τ denotes the iteration number, ∇EN (θ) = ∂EN

∂θ
is the gradient of the

energy function, and ν is a step size that needs to be provided by the user.
In practice, significant computational speed-ups can be achieved by noticing
that EN (θ) and therefore ∇EN (θ) involves summing over the contribution of
all N training points. Since typically there is considerable redundancy in the
training data set, i.e., many training points will contribute similarly, in stochastic
gradient descent the true gradient is approximated by

∇EN (θ) ' N

N ′
∇EN ′(θ),

where ∇EN ′(θ) is the gradient computed from only N ′ � N randomly sampled
training points. Optimizing then proceeds by

θ(τ+1) = θ(τ) − ν′ ∇EN ′(θ(τ)) (4.8)

with step size ν′ = Nν/N ′, after which a new subset of size N ′ is sampled for
the next iteration.

4.3 Feed-forward network functions

Although we have so far only considered a problem where the dimensionality of
x is D = 1, classifiers can also be used in cases where D � 1. As an example,
considering again the same MRI slice of the kidneys as before, but this time
we are given a full manual delineation of the border just outside of the body as
training data (shown in blue in Fig. 4.3b). Our task is now to automatically
segment the same border in other MRI slices and/or patients (an example is
shown in Fig. 4.3c). Since the border cannot be discerned based on intensity
alone, a simple voxel-wise classifier will no longer suffice. Instead, we can take

56 CHAPTER 4. NEURAL NETWORKS

(a) (b) (c)

Figure 4.3: Training image (a) and corresponding segmentation (b) used for
training the network shown in Fig. 4.4, as well as the type of image (c) that the
network should be able to segment after training.

the local context into account, by having as input x not just the intensity of
the pixel we aim to classify, but also that of its immediate 8 neighbors in the
2D pixel grid. The input to the classifier is therefore not a scalar intensity, but
rather an entire 3× 3 image patch, so that the dimensionality is D = 9.

In order to use logistic regression as before, we now face the difficulty of
choosing appropriate basis functions φm(x) in our 9-dimensional input space.
For low-dimensional cases (e.g., D = 2 or D = 3) we could follow the same
procedure as in Sec 1.3 and use separable basis functions, which are simply
the product of 1D basis functions as in (1.11). However, this construct quickly
becomes impractical in higher dimensions since the number of basis functions in-
creases exponentially with the dimensionality (“curse of dimensionality”): with
our five 1D cosines we would obtain 59 basis functions when D = 9, which is
almost 2 million basis functions!

Rather than using a set of fixed basis functions, one solution is to choose basis
functions that are adaptive, by having their form depend on extra parameters
that are also optimized during training. A typical choice of such adaptive basis
functions is as follows:

φm(x) =

{
1 if m = 0,

σ
(∑D

d=1 βm,dxd + βm,0

)
otherwise,

(4.9)

where σ(·) is the logistic function defined in ((4.4)), and the weights βm,d are
extra parameters that together with the coefficients wm form the parameters
θ of the model. Fig. 4.4 has a graphical representation of the resulting model
for the case D = 9 and M = 4. Loosely based on a (now completely outdated)
notion of similarity with how information is processed in the brain, it presents a
simple feed-forward neural network in which information moves from the left of
the figure to the right: all the components xd (called input units in the neural
network literature) of x are linearly combined and then non-linearly transformed
through the logistic function to evaluate the basis functions φm(x)’s (called
hidden units). All the resulting φm(x)’s are then themselves linearly combined

4.3. FEED-FORWARD NETWORK FUNCTIONS 57

Figure 4.4: Graphical representation of a feed-forward neural network with a
9-dimensional input, a single hidden layer with three hidden units, and a single
output unit. Since the parameters w0 and {βm,0} effectively add mere constants
during the computations, they are shown to be connected to additional units
with values clamped to 1 (indicated by filled circles). The information flows
from the left to the right through the network.

and non-linearly transformed in the same way to obtain f(x) (called the output
unit). It is easy to see that this type of model can be readily extended by
inserting more layers of hidden units, each taking the previous hidden layer as
input, resulting in “deep” networks for models with many such layers. Because
of their specific structure, the gradient ∇EN (θ) that is needed for training
these networks can be computed very efficiently, even for very large networks
with many parameters, using an algorithm known as backpropagation [10]).

Fig. 4.5 shows the result of applying our 3 × 3 patch-based network on a
new image, after training it on the image-segmentation pair of Fig. 4.3b using
stochastic gradient descent. The network output f(x) for each pixel is shown
in Fig. 4.5b, and the basis function evaluations {φm(x)}M−1m=1 (called feature
maps) and their coefficients {wm}M−1m=1 are shown in Fig. 4.5d. Since we are
working with 3 × 3 images patches, the set of weights {βm,d, d = 1, . . . , 9} for
each feature m = 1, . . . , 3 has a spatial structure and can be visualized as a
3 × 3 image itself, shown in Fig. 4.5e. Since computing the term

∑D
d=1 βm,dxd

in ((4.9)) for each pixel in the input image can be implemented as a convolution
of the image with a 3 × 3 spatial filter, our network is a simple instance of
what is called a convolutional neural network [11]. In practical applications,
such networks typically have many more hidden layers than just the one used
here, effectively using the feature maps shown in Fig. 4.5d as input to the next
convolutional network layer etc, yielding increasingly higher-level features that
can be used to solve increasingly hard segmentation tasks. The price to be paid
for this increased ability is that the network then has many more parameters to

58 CHAPTER 4. NEURAL NETWORKS

be estimated, which necessitates access to much larger amounts of (often very
hard to get) annotated training data.

4.3. FEED-FORWARD NETWORK FUNCTIONS 59

(a) (b) (c)

(d) (e)

Figure 4.5: Segmentation of a new image using the patch-based network of
Fig. 4.4, after training it on the data of Fig. 4.3b: (a) image to be segmented; (b)
posterior probability generated by the network; (c) final segmentation generated
by the network; (d) the feature maps used by the network to generate the
segmentation, along with the corresponding coefficients; and (e) the 3×3 weight
patterns used to generate the feature maps.

60 CHAPTER 4. NEURAL NETWORKS

Chapter 5

Atlases

In this chapter we discuss the concept of so-called atlases in biomedical im-
age analysis. An atlas is broadly defined as an image that has somehow been
augmented with additional information beyond the voxel intensities alone. The
exact form of this additional information depends on the specific application
the atlas is used for, but typical examples include detailed manual segmenta-
tions of all the structures that are visible in the image, or a reference coordinate
system that allows to compare anatomical or functional characteristics across
different individuals. Atlases are often used as a teaching tool, helping medical
students understand the complicated three-dimensional shape, configuration,
and relations of different anatomical structures, or as an anatomical reference
in surgical planning. They also frequently serve as a means of incorporating
detailed anatomical knowledge into automated segmentation algorithms, or as
a substrate to report novel findings in the scientific literature.

In this chapter we only concentrate on two types of atlases, namely so-
called reference templates and atlases for automated segmentation. Although
the examples in this chapter are all from brain MRI, the same concepts apply
equally well to other imaging modalities such as CT and PET, and different
anatomical structures, including the heart and lungs.

5.1 Reference templates

A reference template T is an image that serves as a reference coordinate system.
By registering other images to this template and transferring relevant functional
or anatomical information accordingly, findings can be compared across individ-
uals, with subject-specific anatomical differences removed. Such a spatial nor-
malization of information has many applications, including understanding the
normal variation in anatomy between different individuals, comparing anatomy
or function between patient populations to understand disease effects, or com-
municating scientific findings to researchers working in different laboratories.

Mathematically, once a template image T has been selected, it can be used

61

62 CHAPTER 5. ATLASES

as a reference coordinate system by mapping any image under study, denoted
by I, into this standard coordinate system. Using the notation from Chapter 2,
a geometrical transformation y(x,w) is computed that maps the coordinates
xn of the template’s voxels to coordinates y(xn,w) in the image. Resampled
intensity values I(y(xn,w)) can then be extracted, effectively deforming the
image into the reference coordinate system.

5.1.1 Intensity averaging

In its simplest form, we can just pick some representative scan of a randomly
chosen subject to serve as the template T . However, it is often desirable to use a
template that is more representative of a whole population, because the anatomy
of a single individual cannot faithfully represent the complex structural variabil-
ity between different people. This can be accomplished by taking a collection
of images {I1, . . . , IQ} acquired from Q different individuals, performing Q− 1
registrations between the scans of individuals 2 . . . Q and the scan of the first
individual, and averaging the resulting images. Specifically, let the parameter
vector of the geometrical transformation mapping individual 1 to individual q
be denoted by wq. For each voxel n in the scan of individual 1, with coordi-
nates xn and intensity I1(xn), we can then obtain the corresponding intensity
Iq(y(xn,wq)) in each subject q = 2 . . . Q. The template T is then computed
by assigning as intensity of voxel n the average intensity over all Q available
images:

T (xn) ←
I1(xn) +

∑Q
q=2 Iq(y(xn,wq))

Q
.

The level of anatomical detail in such average templates depends on the degrees
of freedom in the geometrical transformation y(x,w): models with many degrees
of freedom will be able to match corresponding anatomical locations across all Q
individuals better than simpler models, yielding “sharper” templates. Example
reference templates illustrating this effect are shown in Fig. 5.1.

5.1.2 Group-wise registration

Although the procedure outlined above effectively averages over the intensity
levels across Q different scans, the geometrical shape of the template is still
entirely defined by the shape of the first individual, since the scan of that first
individual was used to establish the coordinate system to which all other scans
were deformed. This can be problematic in studies comparing two different
groups of subjects, if the shape of the first individual is somehow closer to the
average shape of one of the groups: the registration process will then be more
difficult to perform for the other group, resulting in an uneven distribution
of registration errors and ultimately false interpretations about the inferred
differences between the groups.

In order to avoid this situation, it is better to compute a template that is
average both in terms of intensities and anatomical shape. This can be accom-
plished by considering the following generative model for the Q available scans.

5.1. REFERENCE TEMPLATES 63

(a) (b)

Figure 5.1: Reference template obtained by intensity-averaging the brain MR
scans of 20 different individuals after affine (a) and deformable (a) registration.

First, a template image T is assumed to be drawn from some prior distribution
p(T). Since we typically have no reason to prefer certain templates over oth-
ers, we will use a uniform prior, i.e., p(T) ∝ 1. Subsequently, each scan Iq is
assumed to be obtained independently from this template by (1) drawing a sam-
ple wq from some distribution p(w) ∝ exp (−S(w)) governing the deformation
model parameters, where S(w) is a regularizer penalizing unlikely deformations;
(2) deforming the template T accordingly; and (3) adding random, zero-mean
Gaussian noise with variance σ2 to each voxel independently.

With this model, the template T and the deformation parameters {wq} can
be estimated from the Q available scans by maximizing their joint posterior
distribution

p(T ,w1, . . . ,wQ|I1, . . . IQ)

∝ p(I1, . . . IQ|T ,w1, . . . ,wQ)p(T ,w1, . . . ,wQ)

= p(T)

Q∏
q=1

p(Iq|T ,wq)p(wq)

∝
Q∏
q=1

[
N∏
n=1

exp

(
− (Iq(y(xn,wq))− T (xn))

2

2σ2

)]
exp (−S(wq)) . (5.1)

This is equivalent to minimizing − log [p(T ,w1, . . . ,wQ|I1, . . . IQ)], which can
be re-written as:

{T̂ , ŵ1, . . . , ŵQ} =

arg min
{T ,w1,...,wQ}

Q∑
q=1

[
1

2σ2

N∑
n=1

(Iq(y(xn,wq))− T (xn))
2

+ S(wq)

]
. (5.2)

Starting from some initial deformation parameters w̃q, typically chosen to cor-

64 CHAPTER 5. ATLASES

respond to no deformation at all, the optimization of (5.2) can be performed by
updating the estimate of the template T̃ while keeping the deformation param-
eters fixed to their current values, and subsequently updating the deformation
parameters while keeping the template fixed, each in turn, until convergence.
The update for the template that minimizes the objective function of (5.2) for
a given set of deformation parameters is given by

T̃ (xn) ←
∑Q
q=1 Iq(y(xn, w̃q))

Q
(5.3)

for each template voxel n, and the corresponding update for each of the Q
deformation parameter vectors is given by

w̃q ← arg min
wq

[
1

2σ2

N∑
n=1

(
Iq(y(xn,wq))− T̃ (xn)

)2
+ S(wq)

]
, (5.4)

which can be solved using the optimization procedure discussed in Sec. 2.4.1. In
summary, the algorithm computes an initial, fuzzy average template ((5.3)) to
which all Q scans are subsequently registered ((5.4)), after which the template is
re-computed etc, until convergence. The template resulting from this procedure
will show increasingly more anatomical detail as the iterations progress and
the deformations to it become more precise. Upon convergence, a template is
obtained that it is not biased to any of the Q available scans in particular, but
rather represents the average, both in shape and intensity, among all the scans
simultaneously.

5.2 Atlases for segmentation

Another class of atlases is used to infuse prior anatomical knowledge into com-
putational image segmentation algorithms. In this setting, one starts not only
from Q medical images {I1, . . . , IQ}, but also from a corresponding number of
detailed manual segmentations {L1, . . . ,LQ} of those images. To keep notation
consistent with the one used in Chapter 3, we will assume that each voxel in
those segmentations is assigned a unique label k ∈ {1, . . . ,K} that represents
the anatomical structure the voxel belongs to. For each individual q, we thus
have an intensity Iq(x) and a corresponding label Lq(x) in each location x.

Atlases for segmentation purposes come in two distinct forms. So-called
probabilistic atlases contain pre-computed statistics about the Q label images
{Lq}, whereas atlases used for so-called label propagation use the original label
images directly instead. Below we will discuss the basic principles of both types
of segmentation atlases.

5.2.1 Probabilistic atlases

In Chapter 3 we introduced two priors that are often used in model-based seg-
mentation. The first, stated in (3.5), simply assumes that label k occurs with

5.2. ATLASES FOR SEGMENTATION 65

(a) (b)
(c)

Figure 5.2: Samples from three different priors often used in model-based seg-
mentation: the prior used in the standard Gaussian mixture model (a); a Markov
random field prior (b); and a probabilistic atlas prior (c).

probability πk in any given voxel, without any further constraints on the spa-
tial organization of the labels. The second, stated in (3.16) and (3.18), is a
Markov random field model that additionally encourages the different labels
to occur in spatial clusters, rather than being scattered randomly throughout
the image area. Although these priors are computationally convenient to work
with, they do not encode any information about the shape, organization, and
spatial relationships of real anatomical structures, as demonstrated in Fig. 5.2a
and 5.2b).

Here we consider a third class of priors for model-based segmentation, namely
probabilistic atlases, that do encode such prior knowledge of anatomy while still
being computationally attractive. A sample from this type of anatomical prior
is shown in Fig. 5.2c. The prior is constructed as follows. First, an intensity
template T is computed by co-registering all the Q intensity images {Iq} to
a common reference and averaging the intensities, using one of the techniques
discussed in Sec. 5.1. Subsequently, the qth warp y(x,wq) mapping the intensity
image Iq to the template is used to warp the corresponding segmentation Lq
into the template space as well. Finally, at every voxel n with location xn in
the template, one counts the frequency with which each label k occurred at that
location across the Q warped label images:

πn,k =

∑Q
q=1 δ (Lq(y(xn,wq)) = k)

Q
, (5.5)

where δ(k = l) equals one if k = l and zero otherwise. The resulting πn,k repre-
sents roughly the prior probability that label k occurs in voxel n in the template
space: it varies spatially and always satisfies

∑K
k=1 πn,k = 1 in all voxels. Ex-

amples of such prior probability maps derived from manual segmentation of the
brain’s white matter, gray matter and CSF are shown in Fig. 5.3.

Once the template T and the prior probabilities πn,k have been computed,

66 CHAPTER 5. ATLASES

(a)

(b)

Figure 5.3: Probabilistic atlas of the main brain tissue types using affine reg-
istration (a) and deformable registration (b). The atlases represent spatially
varying prior probability maps of white matter, gray matter, CSF, and every-
thing else. Bright and dark intensities correspond to high and low probabilities,
respectively.

5.2. ATLASES FOR SEGMENTATION 67

they can be used to segment a new image I as follows. First, the geometric
transformation between T and I is computed, which is then applied to the prior
probability maps, yielding interpolated prior probabilities πn,k for every class
k in every voxel n in I. These prior probabilities πn,k are then used in place
of the generic πk in every equation of the model-based segmentation models
of Chapter 3, yielding voxel classifications that no longer depends solely on the
voxels’ local intensity alone, but also on their spatial location. Furthermore, the
priors πn,k unambiguously associate segmentation classes to pre-defined anatom-
ical structures, and can be used to automatically initialize the iterative update
equations of the EM optimizers, even in multi-channel data (vector-valued voxel
intensities) where initialization is otherwise difficult. Finally, the spatial priors
are also typically used to discard voxels that are of no interest, such as muscle,
skin, or fat in brain MR scans. As a result, the use of the spatial priors πn,k con-
tributes greatly to the overall robustness and practical value of the model-based
segmentation models discussed in Chapter 3.

5.2.2 Label propagation

In so-called label propagation, an image I is segmented by computing a geo-
metrical transformation y(xn,wq) that maps each voxel location xn in I into a
corresponding location in the qth pre-segmented image Iq. Each voxel’s label is
then simply propagated from the manual segmentation Lq associated with Iq,
i.e., the label assigned to voxel n in I is given by

L(xn) ← Lq(y(xn,wq)).

This process is illustrated in Fig. 5.4.
Of course, the same procedure can be followed for each of the Q pairs

{Iq,Lq}, yielding Q possible segmentations of the same image I. In practice,
it is found that combining all Q segmentations in some way yields a consensus
segmentation that is of a much higher quality than any of the Q original seg-
mentations considered individually. Although there are many possible ways to
combine Q segmentations of the same image, a very simple but still effective
method is so-called majority voting, where each voxel is assigned to the label
that occurred most frequently among all Q individual segmentations:

L(xn) ← arg max
k

[
Q∑
q=1

δ (Lq(y(xn,wq)) = k)

]
.

68 CHAPTER 5. ATLASES

(a)

(b) (c)

(d) (e)

Figure 5.4: In label propagation an image (a) is automatically segmented by
taking an image from another subject (b) that has been manually segmented
(c), computing the deformation that warps the pre-segmented image to the
to-be-segmented image (d), and applying the same deformation to the manual
segmentation (e). The result (e) is an automatic segmentation of the to-be-
segmented image (a).

Chapter 6

Validation

An important aspect of developing medical image analysis algorithms is demon-
strating that the resulting algorithms actually work. This is called validation,
and it often entails quantitatively evaluating how automatically generated re-
sults compare to those obtained by a trained human expert.

Although validation is vital in both registration and segmentation, in this
chapter we will consider only the most important validation strategies for seg-
mentation applications. Specifically, we will discuss two different validation
scenarios: in the first scenario automatic segmentations are compared directly
to manual segmentations that are considered to perfectly reflect the underlying
anatomy, whereas in the second scenario we first need to estimate the underlying
anatomy from several imperfect manual segmentations.

6.1 Validation against a known ground truth

Consider a scenario where someone has developed a new automated segmen-
tation algorithm, and wants to demonstrate its performance. For a number of
different images that are representative of what is encountered in the target
application area, (s)he has access to manual segmentations that have been care-
fully performed by a trained human expert. The task now is to evaluate how
well the automatically generated segmentations compare to the manual ones.

For the remainder of this section, we will concentrate on how to compare
a single manual segmentation with a corresponding automated one, keeping in
mind that in practice one would analyze dozens of different cases and summarize
the results, for instance by averaging the performance over the individual cases.

6.1.1 Confusion matrix, sensitivity, and specificity

To establish notation, let t = (t1, . . . , tN)T denote a manual segmentation of an
image with N voxels, where tn ∈ {0, 1} denotes the label assigned to voxel with
index n. We will refer to t as the ground truth segmentation. By convention,

69

70 CHAPTER 6. VALIDATION

tn = 1 if the voxel belongs to the structure of interest (so-called “foreground”),
and tn = 0 otherwise (“background”). Similarly, the automated algorithm to
be evaluated generates a segmentation s = (s1, . . . , sN)T, sn ∈ {0, 1} that is
(hopefully) similar to t, but not exactly the same.

The number of true positives (TP) is defined as the number of voxels that
are assigned to the foreground in both s and t, i.e.,

TP =

N∑
n=1

sntn. (6.1)

Similarly, the number of true negatives (TN) is defined as the number of voxels
assigned to the background in both s and t:

TN =

N∑
n=1

(1− sn)(1− tn). (6.2)

In contrast to these counts of voxels where both segmentations agree with one
another, the number of false positives (FP) and the number of false negatives
(FN) refer to segmentation errors made by the automated algorithm compared
to the ground truth manual segmentation: in the former case, voxels are erro-
neously assigned to the foreground when they really belong to the background,
and in the latter case the exact opposite occurs:

FP =

N∑
n=1

sn(1− tn) (6.3)

and

FN =

N∑
n=1

(1− sn)tn. (6.4)

The concepts of true positives, true negatives, false positives and false negatives
are illustrated in Fig. 6.1.

The four quantities defined in (6.1)– (6.4) can be summarized in a 2×2 table
called the confusion matrix, defined as

t
0 1

s 0 TN FN

1 FP TP

.

For segmentations that correspond perfectly with the ground truth, the off-
diagonal elements FN and FP in the confusion matrix will be zero.

We can also define the following relative quantities, ranging between 0 and
1:

- The true positive rate TP
TP+FN expresses the fraction of foreground voxels

that were correctly identified as such.

6.1. VALIDATION AGAINST A KNOWN GROUND TRUTH 71

Figure 6.1: Illustration of the concepts true and false positives and negatives.
The “ground truth” segmentation t is shown in blue, and the to-be-evaluated
segmentation s in red.

- The true negative rate TN
TN+FP expresses the fraction of background

voxels that were correctly identified as such.

- The false positive rate FP
TN+FP expresses the fraction of background

voxels that were incorrectly identified as foreground.

- The false negative rate FN
TP+FN expresses the fraction of foreground

voxels that were incorrectly identified as background.

The true positive rate is also commonly referred to as the sensitivity of a seg-
mentation, and the true negative rate as the specificity. For segmentations that
correspond perfectly with the ground truth, they will both have the maximum
value of 1.

6.1.2 ROC curve

In binary classifiers, aiming at correctly assigning binary labels to some input
data, there is often a threshold value that determines the exact location of the
classification boundary in feature space. In some image segmentation problems,
for instance, a viable segmentation strategy might be to assign all voxels with an
intensity above a certain threshold value to the foreground class, and the rest to
the background. An illustration of this process is shown in Fig. 6.2, where some
white matter affected by small vessel disease appears very bright in the MRI
scan, and can therefore be segmented (to some extent) by simple thresholding.

As shown in Fig. 6.2, the exact threshold value that is used plays a decisive
role in the quality of the resulting segmentations. If the threshold value is
chosen too high, only very bright voxels are selected, resulting in a very low false

72 CHAPTER 6. VALIDATION

(a) (b)

(c) (d)

Figure 6.2: In MR images acquired with the so-called FLAIR protocol, lesions
in the white matter appear bright and can be segmented, to some extent, by
simple intensity thresholding. Shown are a skull-stripped FLAIR scan (a); a
manual segmentation that functions as the ground truth t (b); a segmentation
s obtained by thresholding with a high threshold value (c); and with a low
threshold value (d).

6.1. VALIDATION AGAINST A KNOWN GROUND TRUTH 73

Figure 6.3: The ROC curve obtained by intensity thresholding the MR scan of
Fig. 6.2a using a wide range of threshold values, and comparing the results to
the manual segmentation shown in Fig. 6.2b. The red dot corresponds to the
segmentation shown in Fig. 6.2c, the green dot to Fig. 6.2d, and the blue dot
to the threshold setting that minimizes the Euclidean distance to the perfect
classifier (point (0,1)).

positive rate (which is good because it means very few voxels in the background
are erroneously selected), but also in a low true positive rate (which is bad
because it means many foreground voxels have been missed). On the other
hand, choosing the threshold value too low results in an excellent true positive
rate but at the expensive of an elevated false positive rate.

For each setting of the threshold value, we can obtain a pair (false positive
rate, true positive rate) by comparing the resulting segmentation to a manual
segmentation that is considered to be the ground truth (shown in Fig. 6.2b).
The plot of these pairs over a whole range of threshold values is called the
receiver operating characteristic (ROC), or simply ROC curve. The ROC curve
corresponding to the thresholding experiment of Fig. 6.2 is shown in Fig. 6.3.
Note that the point (0,1) corresponds to the (unattainable) perfect classifier: it
classifies all foreground and background voxels correctly. In practice, the best
threshold setting is always a compromise between the false positive rate and
the true positive rate performance. If we do not know anything about the cost
of misclassification (of either type) or the prior distribution of the classes, one
strategy is to choose the threshold value that minimizes the Euclidean distance
between (0,1) (the perfect classifier) and the corresponding location on the ROC
curve.

74 CHAPTER 6. VALIDATION

6.1.3 Dice score

An often used segmentation performance metric that summarizes the overall
spatial overlap between a segmentation s and a ground truth segmentation t
is the so-called Dice score. It is defined as simply the volume of those voxels
that are deemed foreground in both segmentations simultaneously, divided by
the mean volume of the foreground in both segmentations. Since the volume of
the foreground in s is given by TP + FP, and by TP + FN for t, the Dice score
can be computed as

Dice =
TP

(TP+FP)+(TP+FN)
2

=
2TP

2TP + FP + FN
.

It always lies between 0 (no spatial overlap between s and t at all) and 1 (perfect
correspondence), and penalizes both false negatives and false positives at the
same time. It is therefore very easy to report and interpret, making it a popular
overall segmentation performance metric in the medical image segmentation
literature.

Several examples of alternate manual segmentations of the MR data of
Fig. 6.2a are shown in Fig. 6.4, along with their Dice overlap scores with the
first manual segmentation (Fig. 6.4a), which was considered the ground truth t
for this purpose. Note that lower spatial correspondence (e.g., Fig. 6.4d) indeed
results in a lower Dice overlap score.

6.2 Estimating the ground truth

So far, we have assumed that a single manual segmentation performed by a
human expert is the perfect ground truth segmentation, i.e., corresponds per-
fectly to the underlying biology. In practice, however, there is often considerable
disagreement between even highly trained experts on what the perfect segmen-
tation of a given medical image should be. We already saw an example of this
in Fig. 6.4, where different human raters segmented the same MRI scan and
differed quite a bit in their judgment, in this case because the diffuseness of the
lesions makes deciding on exact boundary locations particularly challenging.

In scenarios like this, it is not clear which ground truth segmentations we
should compare the results of new automated algorithms to. We know that some
human experts might produce more accurate segmentations than others: some
might “over-segment” (i.e., have high sensitivity but low specificity), others
might “under-segment” (high specificity but low sensitivity), while yet others
might just be sloppy (both low sensitivity and specificity).

It turns out we can estimate the underlying ground truth t from M im-
perfect manual segmentations by explicitly modeling the errors human experts
are likely to make [12]. Let sm = (s1,m, . . . , sN,m)T denote the mth available
segmentation, where sn,m ∈ {0, 1} indicates whether or not voxel n is assigned

6.2. ESTIMATING THE GROUND TRUTH 75

(a) Dice score: 1 (b) Dice score: 0.78

(c) Dice score: 0.77 (d) Dice score: 0.66

Figure 6.4: Four alternate manual segmentations of the MR scan of Fig. 6.2a.
The Dice scores are computed with respect to the first manual segmentation
(a).

76 CHAPTER 6. VALIDATION

to the foreground by rater m. Assuming that rater m has sensitivity pm and
specificity qm, and that (s)he makes labeling errors in each voxel independently,
we have

p(sm|t, pm, qm) =

N∏
n=1

p(sn,m|tn, pm, qm) (6.5)

for the probability of sm, where

p(s|t, p, q) =

{
ps(1− p)(1−s) if t = 1
q(1−s)(1− q)s if t = 0

. (6.6)

(6.6) simply re-expresses the definition of sensitivity and specificity : if the
ground truth label is 1, there is a probability p that the segmentation label
will also be 1. Similarly, if the ground truth label is 0, the segmentation label
will also be 0 with probability q.

Let S = (s1, . . . , sM) denote all M available segmentations, and similarly
θ = (p1, . . . , pM , q1, . . . , qM)T all the parameters of the model, consisting of the
sensitivity and specificity of all raters, respectively. Since we can assume that
each rater makes his/her segmentation independently of the other raters, we
have that

p(S|t,θ) =

M∏
m=1

p(sm|t, pm, qm)

=

M∏
m=1

N∏
n=1

p(sn,m|tn, pm, qm)

=

N∏
n=1

p(sn|tn,θ), (6.7)

where we have defined

p(sn|tn,θ) =

M∏
m=1

p(sN,m|tn, pm, qm) with sn = (sn,1, . . . sn,M)T (6.8)

for mathematical convenience later on.
In order to complete the model, we also specify a prior p(t) that expresses our

prior expectations about the ground truth segmentation t. Similar to the prior
used in the Gaussian mixture model (cf. (3.5)), we will use a simple prior of the

form p(t) =
∏N
n=1 πtn , where π1 and π0 = (1 − π1) govern the frequency with

which voxels are expected to belong to foreground and background, respectively.
In the remainder, we will assume that reasonable estimates of these parameters
are known in advance, and keep their values fixed throughout.

As was the case with the model-based segmentation models discussed in
Chapter 3, suitable values for the model parameters θ can be obtained through
maximum likelihood estimation. Also here we will perform the optimization

θ̂ = arg max
θ

log p(S|θ)

6.2. ESTIMATING THE GROUND TRUTH 77

by using the EM algorithm, i.e., by repeatedly constructing a lower bound
Q(θ|θ̃) that touches the log likelihood function at the current parameter esti-
mate θ̃, and maximizing that lower bound, until convergence. Since the likeli-
hood function is given by

p(S|θ) =
∑
t

p(S|t,θ)p(t)

=
∑
t

[
N∏
n=1

p(sn|tn,θ)

N∏
n=1

πtn

]

=

N∏
n=1

[
p(sn|tn = 0,θ)π0 + p(sn|tn = 1,θ)π1

]
,

we have that

log p(S|θ) =

N∑
n=1

log

[
p(sn|tn = 0,θ)π0 + p(sn|tn = 1,θ)π1

]

=

N∑
n=1

log

[(
p(sn|tn = 0,θ)π0

ωn,0

)
ωn,0 +

(
p(sn|tn = 1,θ)π1

ωn,1

)
ωn,1

]

≥
N∑
n=1

[
ωn,0 log

(
p(sn|tn = 0,θ)π0

ωn,0

)
+ ωn,1 log

(
p(sn|tn = 1,θ)π1

ωn,1

)]
︸ ︷︷ ︸

Q(θ|θ̃)

,

for any pair of weights {ωn,0, ωn,1} in each voxel that satisfy ωn,0+ωn,1 = 1 and

ωn,0, ωn,1 ≥ 0 (the last step uses (3.28)). In order for Q(θ|θ̃) to additionally

touch the log likelihood function at θ̃, these weights have to be chosen so that

ωn,0 ∝ p(sn|tn = 0, θ̃)π0 and ωn,1 ∝ p(sn|tn = 1, θ̃)π1, (6.9)

as can be easily verified by substituting these weights into the definition of the
lower bound and observing that then Q(θ̃|θ̃) = log p(S|θ̃).

The EM algorithm now dictates that the parameter estimate θ̃ be updated
to the parameter vector that maximizes the lower bound. Re-writing the lower
bound as

Q(θ|θ̃) =

M∑
m=1

[(
N∑
n=1

ωn,0(1− sn,m)

)
log qm +

(
N∑
n=1

ωn,0sn,m

)
log(1− qm)

]

+

M∑
m=1

[(
N∑
n=1

ωn,1sn,m

)
log pm +

(
N∑
n=1

ωn,1(1− sn,m)

)
log(1− pm)

]

+

N∑
n=1

[
ωn,0 log

(
π0
ωn,0

)
+ ωn,1 log

(
π1
ωn,1

)]
(6.10)

78 CHAPTER 6. VALIDATION

and requiring that
∂Q(θ|θ̃)

∂θ
= 0

yields

p̃m ←
∑N
n=1 ωn,1sn,m∑N
n=1 ωn,1

(6.11)

q̃m ←
∑N
n=1 ωn,0(1− sn,m)∑N

n=1 ωn,0
(6.12)

for the updates of the model parameters.
In summary, the EM parameter optimizer iteratively computes the proba-

bility with which each voxel belongs to the foreground or background based on
the available segmentations and the current estimates of each rater’s sensitivity
and specificity ((6.9)), and then updates each rater’s sensitivity and specificity
accordingly ((6.11) and (6.12)). Interesting, if some rater is estimated to have
low sensitivity and specificity, that rater’s segmentation is automatically down-
weighted in the estimation of the foreground/background assignment probabili-
ties, making the algorithm effectively focus on the most trustable segmentations
only.

Upon convergence of the EM algorithm, an estimate of the ground truth
corresponding to the estimated parameters θ̂ can be found by looking for the
maximum a posteriori ground truth

t̂ = arg max
t
p(t|S, θ̂),

which is obtained by assigning each voxel n to the foreground if ωn,1 ≥ 0.5 and
to the background otherwise. This estimated ground truth can then be used as
an unbiased reference segmentation to compare automated segmentation results
to.

Fig. 6.5 shows the underlying ground truth t̂ estimated from the four manual
segmentations shown in Fig. 6.4. The raters’ sensitivity p̂m and specificity q̂m
were estimated by the algorithm to be 0.867 and 0.997 for the segmentation of
Fig. 6.4a, 0.782 and 0.998 for Fig. 6.4b , 0.935 and 0.988 for Fig. 6.4c , and 0.512
and 0.999 for Fig. 6.4d. The absolute values of all the specificity estimates are
high because of the sheer size of the background; it is their relative magnitudes
that really matter.

6.2. ESTIMATING THE GROUND TRUTH 79

Figure 6.5: Estimated ground truth t̂ from the four manual segmentations of
Fig. 6.4. The parameter π1 was set to the average fraction of foreground voxels
across all four manual segmentations, and π0 = (1− π1).

80 CHAPTER 6. VALIDATION

Bibliography

[1] M. Unser, “Splines: A perfect fit for signal and image processing,” IEEE
Signal Processing Magazine, vol. 16, no. 6, pp. 22–38, 1999.

[2] P. H. Schönemann, “A generalized solution of the orthogonal procrustes
problem,” Psychometrika, vol. 31, no. 1, pp. 1–10, 1966.

[3] P. Thévenaz, T. Blu, and M. Unser, “Interpolation revisited [medical im-
ages application],” IEEE Transactions on medical imaging, vol. 19, no. 7,
pp. 739–758, 2000.

[4] W. M. Wells III, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis, “Multi-
modal volume registration by maximization of mutual information,” Med-
ical image analysis, vol. 1, no. 1, pp. 35–51, 1996.

[5] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens,
“Multimodality image registration by maximization of mutual informa-
tion,” IEEE transactions on Medical Imaging, vol. 16, no. 2, pp. 187–198,
1997.

[6] D. Greig, B. Porteous, and A. Seheult, “Exact maximum a posteriori esti-
mation for binary images,” Journal of the Royal Statistical Society. Series
B (Methodological), vol. 51, no. 2, pp. 271–279, 1989.

[7] T. Jaakkola, Advanced Mean Field Methods: Theory and Practice, ch. Tu-
torial on Variational Approximation Methods. The MIT Press, 2001.

[8] D. Hunter and K. Lange, “A tutorial on MM algorithms,” The American
Statistician, vol. 58, no. 1, pp. 30–37, 2004.

[9] C. M. Bishop, Pattern Recognition and Machine Learning. springer, 2006.

[10] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representa-
tions by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536,
1986.

[11] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel, “Backpropagation applied to handwritten zip code
recognition,” Neural Computation, vol. 1, no. 4, pp. 541–551, 1989.

81

82 BIBLIOGRAPHY

[12] S. Warfield, K. Zou, and W. Wells, “Simultaneous truth and performance
level estimation (STAPLE): An algorithm for the validation of image seg-
mentation,” IEEE Transactions on Medical Imaging, vol. 23, no. 7, pp. 903–
921, 2004.

	Smoothing and Interpolation
	Linear regression
	Regularization

	Smoothing and interpolation of 1D signals
	Smoothing
	Interpolation

	Smoothing and interpolation in higher dimensions
	Exploiting separability
	Smoothing in 2D
	Interpolation in 2D

	Image Registration
	Coordinate systems
	Transformation models
	Linear transformations
	Nonlinear transformations

	Landmark-based registration
	Intensity-based registration
	Sum of squared differences
	Mutual Information

	Model-based Segmentation
	Generative models
	Gaussian mixture model
	Markov random field priors
	Markov random field model
	Inference using the mean-field approximation

	Parameter optimization using the EM algorithm
	Modeling MR bias fields

	Neural Networks
	Logistic regression
	Training with stochastic gradient descent
	Feed-forward network functions

	Atlases
	Reference templates
	Intensity averaging
	Group-wise registration

	Atlases for segmentation
	Probabilistic atlases
	Label propagation

	Validation
	Validation against a known ground truth
	Confusion matrix, sensitivity, and specificity
	ROC curve
	Dice score

	Estimating the ground truth

	Bibliography

