This work is licensed under CC BY 4.0

Model-based Segmentation: Part II

Medical Image Analysis Koen Van Leemput Fall 2024

The problem to be solved

One solution: generative modeling

- Formulate a statistical model of image formation

– The model depends on some parameters $\ oldsymbol{ heta} = (oldsymbol{ heta}_l^{\mathrm{T}}, oldsymbol{ heta}_d^{\mathrm{T}})^{\mathrm{T}}$

Segmentation = inverse problem

Label image \mathbf{l}

Segmentation = inverse problem

Bayesian inference

- Play with the mathematical rules of probability

- Assign a label to each voxel independently
- Probability of assigning label k is π_k

$$p(\mathbf{l}|\boldsymbol{\theta}_l) = \prod_n \pi_{l_n}, \qquad \boldsymbol{\theta}_l = (\pi_1, \dots, \pi_K)^{\mathrm{T}}$$

- Draw the intensity in each voxel with label k from a Gaussian distribution with mean μ_k and variance σ_k^2

$$p(\mathbf{d}|\mathbf{l}, \boldsymbol{\theta}_d) = \prod_n \mathcal{N}(d_n | \mu_{l_n}, \sigma_{l_n}^2), \quad \boldsymbol{\theta}_d = (\mu_1, \dots, \mu_K, \sigma_1^2, \dots, \sigma_K^2)^{\mathrm{T}}$$
$$\mathcal{N}(d | \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(d-\mu)^2}{2\sigma^2}\right]$$

$$p(\mathbf{d}|\boldsymbol{\theta}) = \prod_{n} \left(\sum_{k} \mathcal{N}(d_{n}|\mu_{k}, \sigma_{k}^{2}) \pi_{k} \right)$$
$$\boldsymbol{\theta} = (\mu_{1}, \dots, \mu_{K}, \sigma_{1}^{2}, \dots, \sigma_{K}^{2}, \pi_{1}, \dots, \pi_{K})^{\mathrm{T}}$$

Aalto-yliopisto Aalto-universitetet Aalto University

- Apply Bayes' rule:
$$p(\mathbf{l}|\mathbf{d}, \boldsymbol{\theta}) = \prod_{n} p(l_n | d_n, \boldsymbol{\theta})$$

 $p(l_n | d_n, \boldsymbol{\theta}) \propto \mathcal{N}(d_n | \mu_{l_n}, \sigma_{l_n}^2) \pi_{l_n}$

$$\mathbf{I} = \arg\max_{\mathbf{I}} p(\mathbf{I}|\mathbf{d}, \boldsymbol{\theta}) = \arg\max_{l_1, \dots, l_N} p(l_n|d_n)$$

Today's lecture

Today's lecture

How to obtain model parameters?

- Click manually on some representative points for each label
- "Train once, apply forever"
- Doesn't work well in MRI:

۲

- different imaging protocols
- different scanner platforms (make, version)
- software/hardware upgrades

How to obtain model parameters?

- Click manually on some representative points for each label
- "Train once, apply forever"
- Doesn't work well in MRI:

. . . .

- different imaging protocols
- different scanner platforms (make, version)
- software/hardware upgrades

Let's estimate the model parameters automatically from each individual scan

Aalto-yliopisto Aalto-universitetet Aalto University

Aalto-yliopisto **Aalto-universitetet Aalto University**

Aalto-yliopisto Aalto-universitetet Aalto University Estimate the maximum likelihood parameters: $\hat{\theta} = \arg \max_{\theta} p(\mathbf{d}|\theta)$ = $\arg \max_{\theta} \log p(\mathbf{d}|\theta)$

Task:

- 1. Is this valid? Could I use sine() instead of log()?
- 2. Benefit? Hint: compute (0.01)^1000 in Matlab/Python

•

Expectation Maximization (EM) algorithm:

Aalto-yliopisto Aalto-universitetet Aalto University Expectation Maximization (EM) algorithm:

Aalto-yliopisto Aalto-universitetet Aalto University Expectation Maximization (EM) algorithm:

Expectation Maximization (EM) algorithm:

Aalto-yliopisto Aalto-universitetet Aalto University Expectation Maximization (EM) algorithm:

Aalto-yliopisto Aalto-universitetet Aalto University Expectation Maximization (EM) algorithm:

Expectation Maximization (EM) algorithm:

Expectation Maximization (EM) algorithm:

Expectation Maximization (EM) algorithm:

- Repeatedly maximize a lower bound to the objective function
- Guaranteed to <u>**never**</u> move in a wrong direction!

Aalto-yliopisto Aalto-universitetet Aalto University

$$\log p(\mathbf{d}|\boldsymbol{\theta}) = \sum_{n} \log \left(\sum_{k} \mathcal{N}(d_{n}|\mu_{k}, \sigma_{k}^{2}) \pi_{k} \right)$$

$$\log p(\mathbf{d}|\boldsymbol{\theta}) = \sum_{n} \log \left(\sum_{k} \left[\frac{\mathcal{N}(d_{n}|\mu_{k}, \sigma_{k}^{2}) \pi_{k}}{w_{k}^{n}} \right] w_{k}^{n} \right)$$

$$\log p(\mathbf{d}|\boldsymbol{\theta}) = \sum_{n} \log \left(\sum_{k} \left[\frac{\mathcal{N}(d_{n}|\mu_{k}, \sigma_{k}^{2}) \pi_{k}}{w_{k}^{n}} \right] w_{k}^{n} \right)$$
$$\geq \sum_{n} \sum_{k} w_{k}^{n} \log \left(\frac{\mathcal{N}(d_{n}|\mu_{k}, \sigma_{k}^{2}) \pi_{k}}{w_{k}^{n}} \right)$$

$$\log p(\mathbf{d}|\boldsymbol{\theta}) = \sum_{n} \log \left(\sum_{k} \left[\frac{\mathcal{N}(d_{n}|\mu_{k}, \sigma_{k}^{2}) \pi_{k}}{w_{k}^{n}} \right] w_{k}^{n} \right)$$
$$\geq \sum_{n} \sum_{k} w_{k}^{n} \log \left(\frac{\mathcal{N}(d_{n}|\mu_{k}, \sigma_{k}^{2}) \pi_{k}}{w_{k}^{n}} \right)$$

$$\log p(\mathbf{d}|\boldsymbol{\theta}) = \sum_{n} \log \left(\sum_{k} \left[\frac{\mathcal{N}(d_{n}|\mu_{k}, \sigma_{k}^{2}) \pi_{k}}{w_{k}^{n}} \right] w_{k}^{n} \right)$$
$$\geq \sum_{n} \sum_{k} w_{k}^{n} \log \left(\frac{\mathcal{N}(d_{n}|\mu_{k}, \sigma_{k}^{2}) \pi_{k}}{w_{k}^{n}} \right)$$

$$\log p(\mathbf{d}|\boldsymbol{\theta}) = \sum_{n} \log \left(\sum_{k} \left[\frac{\mathcal{N}(d_{n}|\mu_{k}, \sigma_{k}^{2}) \pi_{k}}{w_{k}^{n}} \right] w_{k}^{n} \right)$$
$$\geq \sum_{n} \sum_{k} w_{k}^{n} \log \left(\frac{\mathcal{N}(d_{n}|\mu_{k}, \sigma_{k}^{2}) \pi_{k}}{w_{k}^{n}} \right)$$

The lower bound touches the objective function at the current parameter estimate if $w_k^n \propto \mathcal{N}(d_n | \tilde{\mu}_k, \tilde{\sigma}_k^2) \tilde{\pi}_k$

The lower bound touches the objective function at the current parameter estimate if $w_k^n \propto \mathcal{N}(d_n | \tilde{\mu}_k, \tilde{\sigma}_k^2) \tilde{\pi}_k$

Maximizing the lower bound

Lower bound:

$$\sum_{n} \left[\sum_{k} w_{k}^{n} \log \left(\frac{\mathcal{N}(d_{n} | \mu_{k}, \sigma_{k}^{2}) \pi_{k}}{w_{k}^{n}} \right) \right] = -\frac{1}{2} \sum_{k} \left[\frac{1}{\sigma_{k}^{2}} \sum_{n} w_{k}^{n} (d_{n} - \mu_{k})^{2} + \left(\sum_{n} w_{k}^{n} \right) \log \sigma_{k}^{2} \right] + \sum_{k} \left[\left(\sum_{n} w_{k}^{n} \right) \log \pi_{k} \right] + C$$

Aalto-universitetet Aalto University

Maximizing the lower bound

Lower bound:

$$\sum_{n} \left[\sum_{k} w_{k}^{n} \log \left(\frac{\mathcal{N}(d_{n} | \mu_{k}, \sigma_{k}^{2}) \pi_{k}}{w_{k}^{n}} \right) \right] = -\frac{1}{2} \sum_{k} \left[\frac{1}{\sigma_{k}^{2}} \sum_{n} w_{k}^{n} \left(d_{n} - \mu_{k} \right)^{2} + \left(\sum_{n} w_{k}^{n} \right) \log \sigma_{k}^{2} \right] + \sum_{k} \left[\left(\sum_{n} w_{k}^{n} \right) \log \pi_{k} \right] + C$$

Maximizing the lower bound

Lower bound:

$$\sum_{n} \left[\sum_{k} w_{k}^{n} \log \left(\frac{\mathcal{N}(d_{n} | \mu_{k}, \sigma_{k}^{2}) \pi_{k}}{w_{k}^{n}} \right) \right] = -\frac{1}{2} \sum_{k} \left[\frac{1}{\sigma_{k}^{2}} \sum_{n} w_{k}^{n} \left(d_{n} - \mu_{k} \right)^{2} + \left(\sum_{n} w_{k}^{n} \right) \log \sigma_{k}^{2} \right] + \sum_{k} \left[\left(\sum_{n} w_{k}^{n} \right) \log \pi_{k} \right] + C$$

$$\begin{split} \tilde{\mu}_k &\leftarrow \frac{\sum_n w_k^n d_n}{\sum_n w_k^n} \\ \frac{\partial}{\partial \theta} &= 0 \qquad \Rightarrow \quad \tilde{\sigma}_k^2 &\leftarrow \frac{\sum_n w_k^n (d_n - \tilde{\mu}_k)^2}{\sum_n w_k^n} \\ \tilde{\pi}_k &\leftarrow \frac{\sum_n w_k^n}{N} \end{split}$$

Classify the image voxels according to the current parameter estimate ("E-step")

Update the parameter estimate based on the current classification ("M-step")

- Repeatedly apply closedform parameter updates
- Each iteration improves the log likelihood

- Imaging artifact in MRI
- Smooth intensity variations across the image area

- Depends on the object being scanned
- More pronounced on high-field scanners

Causes segmentation errors with our segmentation procedure so far...

Causes segmentation errors with our segmentation procedure so far...

Generative model

Improved imaging model

Improved imaging model

old model

Improved imaging model

old model

parametric bias field model

Bias field model

Linear combination of M smooth basis functions

$$b_n = \sum_{m=1}^M c_m \phi_m^n$$
$$\mathbf{b} = (b_1, \dots, b_N)^{\mathrm{T}}$$

 ϕ_m^n : value of the *m*th basis function in voxel *n*

 $\mathbf{c} = (c_1, \ldots, c_M)^{\mathrm{T}}$: parameters of the bias field model

Aalto-yliopisto Aalto-universitetet Aalto University

Bias field model

Aalto-yliopisto Aalto-universitetet Aalto University

- Bias field parameters are part of the model parameters
- Parameter optimization with a Generalized Expectation Maximization (GEM) algorithm

- Same derivations as before
- The lower bound touches the objective function at current parameter estimate if $w_k^n \propto \mathcal{N}\left(d_n \sum_m \tilde{c}_m \phi_m^n \mid \tilde{\mu}_k, \tilde{\sigma}_k^2\right) \tilde{\pi}_k$

Improving the lower bound

Improving the lower bound

Improving the lower bound (cont.)

$$\tilde{\mathbf{c}} \leftarrow (\boldsymbol{\Phi}^{\mathrm{T}} \mathbf{S} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{S} \mathbf{r}$$

$$\overset{\boldsymbol{\prime}}{\boldsymbol{\cdot}} \text{ cf. linear regression}$$

$$\overset{\boldsymbol{\prime}}{\boldsymbol{\cdot}} \text{ smoothing operation}$$

$$\boldsymbol{\Phi} = \begin{pmatrix} \phi_1^1 & \phi_2^1 & \dots & \phi_M^1 \\ \phi_1^2 & \phi_2^2 & \dots & \phi_M^2 \\ \vdots & \vdots & \ddots & \vdots \\ \phi_1^N & \phi_2^N & \dots & \phi_M^N \end{pmatrix}$$
$$s_k^n = \frac{w_k^n}{\tilde{\sigma}_k^2}, \quad s_n = \sum_k s_k^n, \quad \boldsymbol{S} = \operatorname{diag}(s_n), \quad \tilde{d}_n = \frac{\sum_k s_k^n \tilde{\mu}_k}{\sum_k s_k^n}, \quad \boldsymbol{r} = \begin{pmatrix} d_1 - \tilde{d}_1 \\ \vdots \\ d_N - \tilde{d}_N \end{pmatrix}$$

Aalto-yliopisto Aalto-universitetet Aalto University

Improving the lower bound (cont.)

$$\tilde{\mathbf{c}} \leftarrow (\mathbf{\Phi}^{\mathrm{T}} \mathbf{S} \mathbf{\Phi})^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{S} \mathbf{r}$$

 $\checkmark \text{ cf. linear regression}$
 $\checkmark \text{ smoothing operation}$
 $\begin{pmatrix} \phi_{1}^{1} & \phi_{2}^{1} & \dots & \phi_{M}^{1} \\ \phi_{2}^{2} & \phi_{2}^{2} & \dots & \phi_{2}^{2} \end{pmatrix}$

$$\boldsymbol{\Phi} = \begin{pmatrix} \phi_1^2 & \phi_2^2 & \dots & \phi_M^2 \\ \vdots & \vdots & \ddots & \vdots \\ \phi_1^N & \phi_2^N & \dots & \phi_M^N \end{pmatrix}$$

$$s_k^n = \underbrace{w_k^n}_{\tilde{\sigma}_k^2} \quad s_n = \sum_k s_k^n, \quad \boldsymbol{S} = \operatorname{diag}(s_n), \quad \tilde{d}_n = \frac{\sum_k s_k^* \tilde{\mu}_k}{\sum_k s_k^n}, \quad \boldsymbol{r} = \begin{pmatrix} d_1 - \tilde{d}_1 \\ \vdots \\ d_N - \tilde{d}_N \end{pmatrix}$$

Aalto-yliopisto Aalto-universitetet Aalto University

E-step

M-step part 1: distribution estimation

M-step part 2: bias field estimation

M-step part 2: bias field estimation

M-step part 2: bias field estimation

- Repeatedly apply closedform parameter updates
- Each iteration improves the likelihood

MRI data

Estimated bias field

Bias-corrected MRI data

MRI data

White matter without bias field model

White matter with bias field model

Estimated bias field

MRI data

White matter without bias field model

White matter with bias field model

Estimated bias field

