This work is licensed under CC BY 4.0

Neural Networks

Medical Image Analysis Koen Van Leemput Fall 2024

Focus: automatic segmentation

Remember the Gaussian mixture model?

Remember the Gaussian mixture model?

Remember the Gaussian mixture model?

Remember linear regression?

- Let $\mathbf{x} = (x_1, \dots, x_D)^T$ denote an input vector in a *D*-dimensional space

- Given N measurements $\{t_n\}_{n=1}^N$ at inputs $\{\mathbf{x}_n\}_{n=1}^N$, what is t at a new input x?

Logistic regression

- Logistic function as a "squashing" function

Logistic regression

- Training data $\{\mathbf{x}_n, t_n\}_{n=1}^N$ with $\mathbf{x}_n = d_n$ (i.e., D = 1) and $t_n \in \{0, 1\}$

- Estimate parameters $\theta = (w_0, \dots, w_{M-1})^T$ by maximizing the likelihood $\prod_{n=1} p(t_n | \mathbf{x}_n, \theta)$

N

- Training data $\{\mathbf{x}_n, t_n\}_{n=1}^N$ with $\mathbf{x}_n = d_n$ (i.e., D = 1) and $t_n \in \{0, 1\}$

- Estimate parameters $\boldsymbol{\theta} = (w_0, \dots, w_{M-1})^{\mathrm{T}}$ by maximizing the likelihood $\prod p(t_n | \mathbf{x}_n, \boldsymbol{\theta})$

N

n=1

- Training data $\{\mathbf{x}_n, t_n\}_{n=1}^N$ with $\mathbf{x}_n = d_n$ (i.e., D = 1) and $t_n \in \{0, 1\}$

- Estimate parameters $\boldsymbol{\theta} = (w_0, \dots, w_{M-1})^{\mathrm{T}}$ by maximizing the likelihood $\prod p(t_n | \mathbf{x}_n, \boldsymbol{\theta})$

N

n=1

- Training data $\{\mathbf{x}_n, t_n\}_{n=1}^N$ with $\mathbf{x}_n = d_n$ (i.e., D = 1) and $t_n \in \{0, 1\}$

- Estimate parameters $\theta = (w_0, \dots, w_{M-1})^T$ by maximizing the likelihood $\prod p(t_n | \mathbf{x}_n, \theta)$

N

n=1

– Once trained keep the classifier: $p(l=1|d, \hat{oldsymbol{ heta}})$

- Simply apply it to new data:

 $p(l=1|d, \hat{\theta})$

 $p(l=1|d, \hat{\theta}) > 0.5$

Optimization algorithm for training

- Maximizing the likelihood function
$$\prod_{n=1}^{N} p(t_n | \mathbf{x}_n, \boldsymbol{\theta}) \text{ is equivalent to minimizing}$$
$$E_N(\boldsymbol{\theta}) = -\log \prod_{n=1}^{N} p(t_n | \mathbf{x}_n, \boldsymbol{\theta}) = -\sum_{n=1}^{N} \{t_n \log f(\mathbf{x}_n) + (1 - t_n) \log [1 - f(\mathbf{x}_n)]\}$$
step size (user-specified)
- Gradient descent:
$$\boldsymbol{\theta}^{(\tau+1)} = \boldsymbol{\theta}^{(\tau)} - \nu \nabla E_N(\boldsymbol{\theta}^{(\tau)}) \text{ with gradient } \nabla E_N(\boldsymbol{\theta}) = \frac{\partial E_N}{\partial \boldsymbol{\theta}}$$

– Stochastic gradient descent: use only $N' \ll N$ randomly sampled training points, and approximate:

$$\nabla E_N(\boldsymbol{\theta}) \simeq \frac{N}{N'} \nabla E_{N'}(\boldsymbol{\theta})$$

More fun: patch-based classifier

- Classify 3x3 image "patches": intensity of the pixel to be classified + intensities of 8 neighboring pixels
- \mathbf{x} is now a 9-dimensional vector (D = 9), but otherwise everything is the same:

$$p(t=1|\mathbf{x}, \hat{\boldsymbol{\theta}}) = \sigma\left(\sum_{m=0}^{M-1} \hat{w}_m \phi_m(\mathbf{x})\right)$$

– But how to choose basis functions $\phi_m(\mathbf{x})$ in a 9-dimensional space?

Basis functions in high dimensions?

- Idea: remember the "separable basis functions" trick?

Aalto-yliopisto Aalto-universitetet Aalto University "making" sixteen 2D basis functions out of two sets of four 1D basis functions

Basis functions in high dimensions?

- Idea: remember the "separable basis functions" trick?

Aalto University

basis functions!

Adaptive basis functions

- Introduce extra parameters that alter the *form* of a limited set of basis functions

- Prototypical example:

$$\phi_{m}(\mathbf{x}) = \begin{cases} 1 & \text{if } m = 0, \\ \sigma\left(\sum_{d=1}^{D} \beta_{m,d} x_{d} + \beta_{m,0}\right) & \text{otherwise} \end{cases}$$
extra parameters

- All parameters ($\{\beta_{m,d}\}\)$ and $\{w_m\}$) are optimized together during training (stochastic gradient descent)

Adaptive basis functions (D=2)

Feed-forward neural network

So the model is:
$$p(t = 1 | \mathbf{x}, \boldsymbol{\theta}) = \sigma \left(\sum_{m=0}^{M-1} w_m \phi_m(\mathbf{x}) \right)$$

parameters
with basis functions $\phi_m(\mathbf{x}) = \begin{cases} 1 & \text{if } m = 0, \\ \sigma \left(\sum_{d=1}^{D} \beta_{m,d} x_d + \beta_{m,0} \right) & \text{otherwise} \end{cases}$

Feed-forward neural network

Aalto-yliopisto Aalto-universitetet Aalto University

Can insert more than one "hidden" layer ("deep learning")

Applying the trained classifier on new data:

Neural networks = ultimate solution?

No model, only training data:

- No domain expertise needed
 Very easy to train and deploy
- Super fast (GPUs)

Training data often very hard to get in medical imaging!Scanning hardware/software/protocol changes routinely!

