This work is licensed under CC BY 4.0

Smoothing and Interpolation

Medical Image Analysis

Koen Van Leemput

Fall 2024

Example: image registration

Example: image registration

Example: image segmentation

Example: image interpolation

- ✓ Let $\mathbf{x} = (x_1, ..., x_D)^T$ denote a spatial position in a *D*-dimensional space
- ✓ Given N measurements $\{t_n\}_{n=1}^N$ at locations $\{\mathbf{x}_n\}_{n=1}^N$, what is t at a new location **x**?

- ✓ Let $\mathbf{x} = (x_1, ..., x_D)^T$ denote a spatial position in a *D*-dimensional space
- ✓ Given *N* measurements $\{t_n\}_{n=1}^N$ at locations $\{\mathbf{x}_n\}_{n=1}^N$, what is *t* at a new location **x**?

- ✓ Let $\mathbf{x} = (x_1, \dots, x_D)^T$ denote a spatial position in a *D*-dimensional space
- ✓ Given N measurements $\{t_n\}_{n=1}^N$ at locations $\{x_n\}_{n=1}^N$, what is t at a new location x?

✓ What are "suitable" values for the weights $\mathbf{w} = (w_0, ..., w_{M-1})^T$?

• Minimize the energy
$$E(\mathbf{w}) = \sum_{n=1}^{N} \left(t_n - \sum_{m=0}^{M-1} w_m \phi_m(\mathbf{x}_n) \right)^2$$

✓ What are "suitable" values for the weights $\mathbf{w} = (w_0, ..., w_{M-1})^T$?

• Minimize the energy
$$E(\mathbf{w}) = \sum_{n=1}^{N} \left(t_n - \sum_{m=0}^{M-1} w_m \phi_m(\mathbf{x}_n) \right)^2$$

Task: find *w* that minimizes
$$E(w) = (5 - 4w)^2 + (3 - 2w)^2$$

✓ What are "suitable" values for the weights $\mathbf{w} = (w_0, ..., w_{M-1})^T$?

• Minimize the energy
$$E(\mathbf{w}) = \sum_{n=1}^{N} \left(t_n - \sum_{m=0}^{M-1} w_m \phi_m(\mathbf{x}_n) \right)^2$$

Task: find *w* that minimizes
$$E(w) = (5 - 4w)^2 + (3 - 2w)^2$$

$$\frac{dE(w)}{dw} = -8(5-4w) - 4(3-2w) = -52 + 40w$$
$$\frac{dE(w)}{dw} = 0 \quad \Rightarrow \quad w = 1.3$$

Aalto-yliopisto Aalto-universitetet Aalto University

✓ What are "suitable" values for the weights $\mathbf{w} = (w_0, ..., w_{M-1})^T$?

• Minimize the energy
$$E(\mathbf{w}) = \sum_{n=1}^{N} \left(t_n - \sum_{m=0}^{M-1} w_m \phi_m(\mathbf{x}_n) \right)^2$$

✓ What are "suitable" values for the weights $\mathbf{w} = (w_0, ..., w_{M-1})^T$?

• Minimize the energy
$$E(\mathbf{w}) = \sum_{n=1}^{N} \left(t_n - \sum_{m=0}^{M-1} w_m \phi_m(\mathbf{x}_n) \right)^2$$

$$\frac{\partial E(\mathbf{w})}{\partial w_m} = -2\sum_{n=1}^N \left(t_n - \sum_{m=0}^{M-1} w_m \phi_m(\mathbf{x}_n) \right) \phi_m(\mathbf{x}_n)$$

What are "suitable" values for the weights $\mathbf{w} = (w_0, \dots, w_{M-1})^{\mathrm{T}}$? ~

• Minimize the energy
$$E(\mathbf{w}) = \sum_{n=1}^{N} \left(t_n - \sum_{m=0}^{M-1} w_m \phi_m(\mathbf{x}_n) \right)^2$$

$$\nabla E(\mathbf{w}) = \begin{pmatrix} \frac{\partial E(\mathbf{w})}{\partial w_0} \\ \vdots \\ \frac{\partial E(\mathbf{w})}{\partial w_{M-1}} \end{pmatrix} = -2\Phi^{\mathrm{T}} (\mathbf{t} - \Phi \mathbf{w}), \qquad \Phi = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \dots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \dots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \dots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}$$
$$\mathbf{t} = (t_1, \dots, t_N)^{\mathrm{T}}$$

$$\mathbf{w} = \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}
ight)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}$$

Smoothing

Let's concentrate on one-dimensional (1D) "images": M-1

- Functions of the form $y(x, \mathbf{w}) = \sum_{m=0}^{\infty} w_m \phi_m(x)$, where the location x is a scalar
- ✓ Measurement points are defined on a regular grid: $x_1 = 0, x_2 = 1, ..., x_N = N 1$

"Denoising":

- ✓ The measurements $t_n, n = 1, ..., N$ are noisy observations
- ✓ Recover the underlying signal $\hat{t}_n = y(x_n, \mathbf{w})$ at the locations x_n

Smoothing

$$\checkmark$$
 We aim to recover $\mathbf{\hat{t}} = (\hat{t}_1, \dots, \hat{t}_N)^{\mathrm{T}}$ from $\mathbf{t} = (t_1, \dots, t_N)^{\mathrm{T}}$

$$\label{eq:constraint} \boldsymbol{\mathcal{V}} \quad \text{Since } \ \boldsymbol{\hat{t}} = \boldsymbol{\Phi} \mathbf{w} \ \text{and} \quad \mathbf{w} = \left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{t} \colon$$

$$\mathbf{\hat{t}} = \mathbf{St}$$
 with $\mathbf{S} = \mathbf{\Phi} \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}
ight)^{-1} \mathbf{\Phi}^{\mathrm{T}}$

Consider the case $\mathbf{t} = (2,1,3)^T$ and $\mathbf{\Phi} = (1,1,1)^T$

Task 1: what is $\mathbf{w} = \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}$?

Task 2: what are
$$\mathbf{\hat{t}} = \mathbf{St}$$
 and $\mathbf{S} = \mathbf{\Phi} \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \right)^{-1} \mathbf{\Phi}^{\mathrm{T}}$?

Can you explain (e.g., draw) what's happening?

Task 3: same as task 2 but when $\Phi =$

$$= \left(\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{array}\right)$$

Consider the case $\mathbf{t} = (2,1,3)^T$ and $\mathbf{\Phi} = (1,1,1)^T$

Task 1: what is $\mathbf{w} = \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}$?

Task 2: what are
$$\hat{\mathbf{t}} = \mathbf{S}\mathbf{t}$$
 and $\mathbf{S} = \mathbf{\Phi} \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}}$?

Can you explain (e.g., draw) what's happening?

Task 3: same as task 2 but when $\Phi =$

$$= \left(\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{array}\right)$$

Consider the case $\mathbf{t} = (2,1,3)^T$ and $\mathbf{\Phi} = (1,1,1)^T$

Task 1: what is $\mathbf{w} = \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}$?

Task 2: what are
$$\mathbf{\hat{t}} = \mathbf{St}$$
 and $\mathbf{S} = \mathbf{\Phi} \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \right)^{-1} \mathbf{\Phi}^{\mathrm{T}}$?

Can you explain (e.g., draw) what's happening?

Task 3: same as task 2 but when $\Phi =$

$$= \left(\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{array}\right)$$

/ 1 1 1 1

 $w = 3^{-1}6 = 2$

Consider the case $\mathbf{t} = (2,1,3)^T$ and $\mathbf{\Phi} = (1,1,1)^T$

Task 1: what is $\mathbf{w} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$?

Task 2: what are $\ \mathbf{\hat{t}} = \mathbf{St}$ and $\ \mathbf{S} = \mathbf{\Phi} \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}
ight)^{-1} \mathbf{\Phi}^{\mathrm{T}}$?

Can you explain (e.g., draw) what's happening?

Task 3: same as task 2 but when $\Phi = \begin{bmatrix} 1 & 2 & 4 \end{bmatrix}$

Consider the case $\mathbf{t} = (2, 1, 3)^T$ and $\mathbf{\Phi} = (1, 1, 1)^T$

Task 1: what is $\mathbf{w} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$?

Task 2: what are $\mathbf{\hat{t}} = \mathbf{St}$ and $\mathbf{S} = \mathbf{\Phi} \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \right)^{-1} \mathbf{\Phi}^{\mathrm{T}}$?

Can you explain (e.g., draw) what's happening?

Task 3: same as task 2 but when $\Phi = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \end{pmatrix}$

 $1 \ 3 \ 9$

Consider the case $\mathbf{t} = (2,1,3)^T$ and $\mathbf{\Phi} = (1,1,1)^T$

Task 1: what is $\mathbf{w} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$?

Task 2: what are $\mathbf{\hat{t}} = \mathbf{St}$ and $\mathbf{S} = \mathbf{\Phi} \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \right)^{-1} \mathbf{\Phi}^{\mathrm{T}}$?

Can you explain (e.g., draw) what's happening?

Task 3: same as task 2 but when $\Phi =$

Consider the case $\mathbf{t}=(2,1,3)^T$ and $\mathbf{\Phi}=(1,1,1)^T$

Task 1: what is $\mathbf{w} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$?

Task 2: what are
$$\hat{\mathbf{t}} = \mathbf{S}\mathbf{t}$$
 and $\mathbf{S} = \mathbf{\Phi} \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}}$?

Can you explain (e.g., draw) what's happening?

Task 3: same as task 2 but when $\Phi =$

$$= \left(\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{array}\right)$$

Consider the case $\mathbf{t} = (2, 1, 3)^T$ and $\mathbf{\Phi} = (1, 1, 1)^T$

Task 1: what is $\mathbf{w} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$?

Task 2: what are
$$\mathbf{\hat{t}} = \mathbf{St}$$
 and $\mathbf{S} = \mathbf{\Phi} \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \right)^{-1} \mathbf{\Phi}^{\mathrm{T}}$?

Can you explain (e.g., draw) what's happening?

Task 3: same as task 2 but when $\Phi =$

$$\left(\begin{array}{rrrr}1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9\end{array}\right)$$

Aalto-yliopisto Aalto-universitetet Aalto University

$$\begin{pmatrix} \boldsymbol{\Phi}^T \boldsymbol{\Phi} \end{pmatrix}^{-1} = \boldsymbol{\Phi}^{-1} \begin{pmatrix} \boldsymbol{\Phi}^T \end{pmatrix}^{-1}$$

$$\mathbf{S} = \mathbf{\Phi} \mathbf{\Phi}^{-1} \begin{pmatrix} \boldsymbol{\Phi}^T \end{pmatrix}^{-1} \mathbf{\Phi}^T$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{\hat{t}} = \mathbf{t} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$

Consider the case $\mathbf{t} = (2,1,3)^T$ and $\mathbf{\Phi} = (1,1,1)^T$

Task 1: what is $\mathbf{w} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}$?

Task 2: what are $\hat{\mathbf{t}} = \mathbf{S}\mathbf{t}$ and $\mathbf{S} = \mathbf{\Phi} \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}}$?

Can you explain (e.g., draw) what's happening?

Task 3: same as task 2 but when $\Phi = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \end{pmatrix}$

 $\left(\begin{array}{rrrr}1 & 1 & 1\\ 1 & 2 & 4\\ 1 & 3 & 9\end{array}\right)$

When M=N,A? no smoothing is applied!

Use M = N basis functions: $\phi_m(x) = \beta^p(x - m), \quad m = 0, \dots, N - 1$

✓ $y(x, \mathbf{w})$ will pass exactly through t_n at the integer locations x_n

Use M = N basis functions: $\phi_m(x) = \beta^p(x - m), \quad m = 0, \dots, N - 1$

✓ $y(x, \mathbf{w})$ will pass exactly through t_n at the integer locations x_n

Use M = N basis functions: $\phi_m(x) = \beta^p(x - m), \quad m = 0, \dots, N - 1$

✓ $y(x, \mathbf{w})$ will pass exactly through t_n at the integer locations x_n

Going to higher dimensions

Re-arrange pixels in 2D images of size $N_1 \times N_2$ into 1D signals of length $N = N_1 N_2$ Vectorize the image to be smoothed or interpolated ~

- $\mathbf{T} = \begin{pmatrix} t_{1,1} & t_{1,2} & \cdots & t_{1,N_2} \\ t_{2,1} & t_{2,2} & \cdots & t_{2,N_2} \\ \vdots & \vdots & \ddots & \vdots \\ t_{N_1,1} & t_{N_1,2} & \cdots & t_{N_1,N_2} \end{pmatrix} \qquad \qquad \mathbf{t} = \operatorname{vec}(\mathbf{T}) = \begin{pmatrix} t_{1,1} \\ \vdots \\ t_{N_1,1} \\ t_{1,2} \\ \vdots \\ t_{N_1,2} \\ \vdots \\ t_{N_1,N_2} \end{pmatrix}$
- Also vectorize each of the 2D basis functions ~

Solve the resulting 1D problem as before

Separable basis functions

Create 2D basis functions from two sets of 1D basis functions

 $oldsymbol{\prime}$ Kronecker product: $oldsymbol{\Phi}=oldsymbol{\Phi}_2\otimesoldsymbol{\Phi}_1$, where $oldsymbol{A}\otimesoldsymbol{B}=$

where $\mathbf{A} \otimes \mathbf{B} = \begin{pmatrix} a_{1,1}\mathbf{B} & a_{2,1}\mathbf{B} & \dots \\ \hline a_{2,1}\mathbf{B} & a_{2,2}\mathbf{B} & \dots \\ \hline \vdots & \vdots & \ddots \end{pmatrix}$

✓ Column $m = m_1 + m_2 M_1$ in Φ contains a vectorized version of $\phi_m(\mathbf{x}) = \phi_{m_1}(x_1)\phi_{m_2}(x_2)$

Aalto-yliopisto Aalto-universitetet Aalto University

Separable basis functions

$\left(\begin{array}{c} 1\\ 8\\ 24\\ 33\\ 24\\ 8 \end{array} \right)$	· (1	8	24	33	24	8	1)	=	$ \left(\begin{array}{c} 1 \cdot 1 \\ 8 \cdot 1 \\ 24 \cdot 1 \\ 33 \cdot 1 \\ 24 \cdot 1 \\ 8 \cdot 1 \end{array}\right) $	$1 \cdot 8$ $8 \cdot 8$ $24 \cdot 8$ $33 \cdot 8$ $24 \cdot 8$ $8 \cdot 8$	$ \begin{array}{r} 1 \cdot 24 \\ 8 \cdot 24 \\ 24 \cdot 24 \\ 33 \cdot 24 \\ 24 \cdot 24 \\ 8 \cdot 24 \\ \end{array} $	$1 \cdot 33$ $8 \cdot 33$ $24 \cdot 33$ $33 \cdot 33$ $24 \cdot 33$ $8 \cdot 33$	$ \begin{array}{r} 1 \cdot 24 \\ 8 \cdot 24 \\ 24 \cdot 24 \\ 33 \cdot 24 \\ 24 \cdot 24 \\ 8 \cdot 24 \\ \end{array} $	$1 \cdot 8$ $8 \cdot 8$ $24 \cdot 8$ $33 \cdot 8$ $24 \cdot 8$ $8 \cdot 8$	$1 \cdot 1$ $8 \cdot 1$ $24 \cdot 1$ $33 \cdot 1$ $24 \cdot 1$ $8 \cdot 1$
$\begin{pmatrix} 24\\ 8\\ 1 \end{pmatrix}$									$ \left(\begin{array}{c} 24 \cdot 1 \\ 8 \cdot 1 \\ 1 \cdot 1 \end{array}\right) $	$24\cdot 8 \ 8\cdot 8 \ 1\cdot 8$	$24\cdot 24\ 8\cdot 24\ 1\cdot 24$	$24 \cdot 33 \\ 8 \cdot 33 \\ 1 \cdot 33$	$24\cdot 24\ 8\cdot 24\ 1\cdot 24$	$24 \cdot 8$ $8 \cdot 8$ $1 \cdot 8$	$egin{array}{c} 24 \cdot 1 \ 8 \cdot 1 \ 1 \cdot 1 \end{array}$

Exploiting separability

 $m{\prime}$ When $\Phi=\Phi_2\otimes\Phi_1$, we can compute $\mathbf{c}=\Phi^{\mathrm{T}}\mathbf{t}$ faster as follows:

$$\mathbf{C} = \mathbf{\Phi}_1^T \mathbf{T} \mathbf{\Phi}_2$$
 where $\operatorname{vec}(\mathbf{C}) = \mathbf{c}$

✓ As a result, we can also compute $\mathbf{w} = \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}$ as:

$$\mathbf{W} = \left(\mathbf{\Phi}_1^{\mathrm{T}} \mathbf{\Phi}_1\right)^{-1} \mathbf{\Phi}_1^{\mathrm{T}} \mathbf{T} \mathbf{\Phi}_2 \left(\mathbf{\Phi}_2^{\mathrm{T}} \mathbf{\Phi}_2\right)^{-1} \quad \text{where} \quad \operatorname{vec}(\mathbf{W}) = \mathbf{w}$$

Exploiting separability

 $m{\prime}$ When $\Phi=\Phi_2\otimes\Phi_1$, we can compute $\mathbf{c}=\Phi^{\mathrm{T}}\mathbf{t}$ faster as follows:

$$\mathbf{C} = \mathbf{\Phi}_1^T \mathbf{T} \mathbf{\Phi}_2$$
 where $\operatorname{vec}(\mathbf{C}) = \mathbf{c}$

✓ As a result, we can also compute $\mathbf{w} = \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}$ as:

$$\mathbf{W} = \left(\mathbf{\Phi}_1^{\mathrm{T}} \mathbf{\Phi}_1\right)^{-1} \mathbf{\Phi}_1^{\mathrm{T}} \mathbf{T} \mathbf{\Phi}_2 \left(\mathbf{\Phi}_2^{\mathrm{T}} \mathbf{\Phi}_2\right)^{-1} \quad \text{where} \quad \operatorname{vec}(\mathbf{W}) = \mathbf{w}$$

Example: naively interpolating a 256x256 image (M = 256*256 = 65,536 basis functions in 2D!)

Storing ${f \Phi}^T {f \Phi}$ takes 32 GB, vs. 1MB to store both ${f \Phi}_1^T {f \Phi}_1$ and ${f \Phi}_2^T {f \Phi}_2$

Inverting $\Phi^T \Phi$ is almost <u>10 million times slower</u> than inverting both $\Phi_1^T \Phi_1$ and $\Phi_2^T \Phi_2$

Aalto-yliopisto Aalto-universitetet Aalto University

Smoothing in 2D

$$\mathbf{T}$$

$$\hat{\mathbf{T}} = \mathbf{S}_1 \mathbf{T} \mathbf{S}_2^{\mathrm{T}}$$

$$\mathbf{S}_1 = \mathbf{\Phi}_1 \left(\mathbf{\Phi}_1^{\mathrm{T}} \mathbf{\Phi}_1
ight)^{-1} \mathbf{\Phi}_1^{\mathrm{T}}$$

smoothing in the **row-direction**

smoothing in the column-direction

Interpolation in 2D

